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Abstract

Supervised topic models simultaneously model the latent topic structure of large
collections of documents and a response variable associated with each docu-
ment. Existing inference methods are based on either variational approximation or
Monte Carlo sampling. This paper presents a novel spectral decomposition algo-
rithm to recover the parameters of supervised latent Dirichlet allocation (sLDA)
models. The Spectral-sLDA algorithm is provably correct and computationally
efficient. We prove a sample complexity bound and subsequently derive a suffi-
cient condition for the identifiability of sLDA. Thorough experiments on a diverse
range of synthetic and real-world datasets verify the theory and demonstrate the
practical effectiveness of the algorithm.

1 Introduction

Topic modeling offers a suite of useful tools that automatically learn the latent semantic structure of a
large collection of documents. Latent Dirichlet allocation (LDA) [9] represents one of the most pop-
ular topic models. The vanilla LDA is an unsupervised model built on input contents of documents.
In many applications side information is available apart from raw contents, e.g., user-provided rat-
ing scores of an online review text. Such side signal usually provides additional information to
reveal the underlying structures of the documents in study. There have been extensive studies on
developing topic models that incorporate various side information, e.g., by treating it as supervision.
Some representative models are supervised LDA (sLDA) [8] that captures a real-valued regression
response for each document, multiclass sLDA [21] that learns with discrete classification responses,
discriminative LDA (DiscLDA) [14] that incorporates classification response via discriminative lin-
ear transformations on topic mixing vectors, and MedLDA [22, 23] that employs a max-margin
criterion to learn discriminative latent topic representations.

Topic models are typically learned by finding maximum likelihood estimates (MLE) through local
search or sampling methods [12, 18, 19], which may suffer from local optima. Much recent progress
has been made on developing spectral decomposition [1, 2, 3] and nonnegative matrix factorization
(NMF) [4, 5, 6, 7] methods to infer latent topic-word distributions. Instead of finding MLE estimates,
which is a known NP-hard problem [6], these methods assume that the documents are i.i.d. sampled
from a topic model, and attempt to recover the underlying model parameters. Compared to local
search and sampling algorithms, these methods enjoy the advantage of being provably effective. In
fact, sample complexity bounds have been proved to show that given a sufficiently large collection
of documents, these algorithms can recover the model parameters accurately with a high probability.

Although spectral decomposition (as well as NMF) methods have achieved increasing success in
recovering latent variable models, their applicability is quite limited. For example, previous work
has mainly focused on unsupervised latent variable models, leaving the broad family of supervised
models (e.g., sLDA) largely unexplored. The only exception is [10] which presents a spectral method
for mixtures of regression models, quite different from sLDA. Such ignorance is not a coincidence
as supervised models impose new technical challenges. For instance, a direct application of previous
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techniques [1, 2] on sLDA cannot handle regression models with duplicate entries. In addition, the
sample complexity bound gets much worse if we try to match entries in regression models with their
corresponding topic vectors. On the practical side, few quantitative experimental results (if any at
all) are available for spectral decomposition based methods on LDA models.

In this paper, we extend the applicability of spectral learning methods by presenting a novel spec-
tral decomposition algorithm to recover the parameters of sLDA models from empirical low-order
moments estimated from the data. We provide a sample complexity bound and analyze the identi-
fiability conditions. A key step in our algorithm is a power update step that recovers the regression
model in sLDA. The method uses a newly designed empirical moment to recover regression model
entries directly from the data and reconstructed topic distributions. It is free from making any con-
straints on the underlying regression model, and does not increase the sample complexity much.
We also provide thorough experiments on both synthetic and real-world datasets to demonstrate the
practical effectiveness of our proposed algorithm. By combining our spectral recovery algorithm
with a Gibbs sampling procedure, we showed superior performance in terms of language modeling,
prediction accuracy and running time compared to traditional inference algorithms.

2 Preliminaries
We first overview the basics of sLDA, orthogonal tensor decomposition and the notations to be used.

2.1 Supervised LDA

Latent Dirichlet allocation (LDA) [9] is a generative model for topic modeling of text documents.
It assumes k different topics with topic-word distributions µ1, · · · ,µk ∈ ∆V−1, where V is the
vocabulary size and ∆V−1 denotes the probability simplex of a V -dimensional random vector. For
a document, LDA models a topic mixing vector h ∈ ∆k−1 as a probability distribution over the
k topics. A conjugate Dirichlet prior with parameter α is imposed on the topic mixing vectors. A
bag-of-word model is then adopted, which generates each word in the document based on h and
the topic-word vectors µ. Supervised latent Dirichlet allocation (sLDA) [8] incorporates an extra
response variable y ∈ R for each document. The response variable is modeled by a linear regression
model η ∈ Rk on either the topic mixing vector h or the averaging topic assignment vector z̄, where
z̄i = 1

m

∑
j 1[zj=i] withm the number of words in a document. The noise is assumed to be Gaussian

with zero mean and σ2 variance.

Fig. 1 shows the graph structure of two sLDA variants mentioned above. Although previous work
has mainly focused on model (b) which is convenient for Gibbs sampling and variational inference,
we consider model (a) because it will considerably simplify our spectral algorithm and analysis. One
may assume that whenever a document is not too short, the empirical distribution of its word topic
assignments should be close to the document’s topic mixing vector. Such a scheme was adopted to
learn sparse topic coding models [24], and has demonstrated promising results in practice.

2.2 High-order tensor product and orthogonal tensor decomposition

A real p-th order tensor A ∈
⊗p

i=1 Rni belongs to the tensor product of Euclidean spaces Rni .
Generally we assume n1 = n2 = · · · = np = n, and we can identify each coordinate of A by a
p-tuple (i1, · · · , ip), where i1, · · · , ip ∈ [n]. For instance, a p-th order tensor is a vector when p = 1
and a matrix when p = 2. We can also consider a p-th order tensor A as a multilinear mapping. For
A ∈

⊗p Rn and matricesX1, · · · , Xp ∈ Rn×m, the mappingA(X1, · · · , Xp) is a p-th order tensor
in
⊗pRm, with [A(X1, · · · , Xp)]i1,··· ,ip ,

∑
j1,··· ,jp∈[n]Aj1,··· ,jp [X1]j1,i1 [X2]j2,i2 · · · [Xp]jp,ip .

Consider some concrete examples of such a multilinear mapping. When A,X1, X2 are matrices, we
have A(X1, X2) = X>1 AX2. Similarly, when A is a matrix and x is a vector, A(I, x) = Ax.

An orthogonal tensor decomposition of a tensor A ∈
⊗pRn is a collection of orthonormal vectors

{vi}ki=1 and scalars {λi}ki=1 such that A =
∑k
i=1 λiv

⊗p
i . Without loss of generality, we assume

λi are nonnegative when p is odd. Although orthogonal tensor decomposition in the matrix case
can be done efficiently by singular value decomposition (SVD), it has several delicate issues in
higher order tensor spaces [2]. For instance, tensors may not have unique decompositions, and an
orthogonal decomposition may not exist for every symmetric tensor [2]. Such issues are further
complicated when only noisy estimates of the desired tensors are available. For these reasons, we
need more advanced techniques to handle high-order tensors. In this paper, we will apply the robust
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Figure 1: Plate notations for two variants of sLDA

tensor power method [2] to recover robust eigenvalues and eigenvectors of an (estimated) third-order
tensor. The algorithm recovers eigenvalues and eigenvectors up to an absolute error ε, while running
in polynomial time with respect to the tensor dimension and log(1/ε). Further details and analysis
of the robust tensor power method are presented in Appendix A.2 and [2].

2.3 Notations

Throughout, we use v⊗p , v⊗v⊗· · ·⊗v to denote the p-th order tensor generated by a vector v. We
use ‖v‖ =

√∑
i v

2
i to denote the Euclidean norm of a vector v, ‖M‖ to denote the spectral norm

of a matrix M and ‖T‖ to denote the operator norm of a high-order tensor. ‖M‖F =
√∑

i,jM
2
ij

denotes the Frobenious norm of a matrix. We use an indicator vector x ∈ RV to represent a word in
a document, e.g., for the i-th word in the vocabulary, xi = 1 and xj = 0 for all j 6= i. We also use
O , (µ1,µ2, · · · ,µk) ∈ RV×k to denote the topic distribution matrix, and Õ , (µ̃1, µ̃2, · · · , µ̃K)

to denote the canonical version of O, where µ̃i =
√

αi

α0(α0+1)µ with α0 =
∑k
i=1 αi.

3 Spectral Parameter Recovery

We now present a novel spectral parameter recovery algorithm for sLDA. The algorithm consists of
two key components—the orthogonal tensor decomposition of observable moments to recover the
topic distribution matrix O and a power update method to recover the linear regression model η. We
elaborate on these techniques and a rigorous theoretical analysis in the following sections.

3.1 Moments of observable variables

Our spectral decomposition methods recover the topic distribution matrixO and the linear regression
model η by manipulating moments of observable variables. In Definition 1, we define a list of
moments on random variables from the underlying sLDA model.
Definition 1. We define the following moments of observable variables:

M1 = E[x1], M2 = E[x1 ⊗ x2]− α0

α0 + 1
M1 ⊗M1, (1)

M3 = E[x1 ⊗ x2 ⊗ x3]− α0

α0 + 2
(E[x1 ⊗ x2 ⊗M1] + E[x1 ⊗M1 ⊗ x2] + E[M1 ⊗ x1 ⊗ x2])

+
2α2

0

(α0 + 1)(α0 + 2)
M1 ⊗M1 ⊗M1, (2)

My = E[yx1 ⊗ x2]− α0

α0 + 2
(E[y]E[x1 ⊗ x2] + E[x1]⊗ E[yx2] + E[yx1]⊗ E[x2])

+
2α2

0

(α0 + 1)(α0 + 2)
E[y]M1 ⊗M1. (3)

Note that the moments M1, M2 and M3 were also defined and used in previous work [1, 2] for the
parameter recovery for LDA models. For the sLDA model, we need to define a new moment My

in order to recover the linear regression model η. The moments are based on observable variables
in the sense that they can be estimated from i.i.d. sampled documents. For instance, M1 can be
estimated by computing the empirical distribution of all words, and M2 can be estimated using M1

and word co-occurrence frequencies. Though the moments in the above forms look complicated,
we can apply elementary calculations based on the conditional independence structure of sLDA to
significantly simplify them and more importantly to get them connected with the model parameters
to be recovered, as summarized in Proposition 1. The proof is deferred to Appendix B.
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Proposition 1. The moments can be expressed using the model parameters as:

M2 =
1

α0(α0 + 1)

k∑
i=1

αiµi ⊗ µi, M3 =
2

α0(α0 + 1)(α0 + 2)

k∑
i=1

αiµi ⊗ µi ⊗ µi, (4)

My =
2

α0(α0 + 1)(α0 + 2)

k∑
i=1

αiηiµi ⊗ µi. (5)

3.2 Simultaneous diagonalization

Proposition 1 shows that the moments in Definition 1 are all the weighted sums of tensor products
of {µi}ki=1 from the underlying sLDA model. One idea to reconstruct {µi}ki=1 is to perform si-
multaneous diagonalization on tensors of different orders. The idea has been used in a number of
recent developments of spectral methods for latent variable models [1, 2, 10]. Specifically, we first
whiten the second-order tensor M2 by finding a matrix W ∈ RV×k such that W>M2W = Ik.
This whitening procedure is possible whenever the topic distribuction vectors {µi}ki=1 are linearly
independent (and hence M2 has rank k). The whitening procedure and the linear independence
assumption also imply that {Wµi}ki=1 are orthogonal vectors (see Appendix A.2 for details), and
can be subsequently recovered by performing an orthogonal tensor decomposition on the simultane-
ously whitened third-order tensor M3(W,W,W ). Finally, by multiplying the pseudo-inverse of the
whitening matrix W+ we obtain the topic distribution vectors {µi}ki=1.

It should be noted that Jennrich’s algorithm [13, 15, 17] could recover {µi}ki=1 directly from the 3-
rd order tensor M3 alone when {µi}ki=1 is linearly independent. However, we still adopt the above
simultaneous diagonalization framework because the intermediate vectors {Wµi}ki=1 play a vital
role in the recovery procedure of the linear regression model η.

3.3 The power update method

Although the linear regression model η can be recovered in a similar manner by performing simul-
taneous diagonalization on M2 and My , such a method has several disadvantages, thereby calling
for novel solutions. First, after obtaining entry values {ηi}ki=1 we need to match them to the topic
distributions {µi}ki=1 previously recovered. This can be easily done when we have access to the true
moments, but becomes difficult when only estimates of observable tensors are available because the
estimated moments may not share the same singular vectors due to sampling noise. A more seri-
ous problem is that when η has duplicate entries the orthogonal decomposition of My is no longer
unique. Though a randomized strategy similar to the one used in [1] might solve the problem, it
could substantially increase the sample complexity [2] and render the algorithm impractical.

We develop a power update method to resolve the above difficulties. Specifically, after obtaining the
whitened (orthonormal) vectors {vi} , ci ·Wµi 1 we recover the entry ηi of the linear regression
model directly by computing a power update v>i My(W,W )vi. In this way, the matching problem
is automatically solved because we know what topic distribution vector µi is used when recovering
ηi. Furthermore, the singular values (corresponding to the entries of η) do not need to be distinct
because we are not using any unique SVD properties of My(W,W ). As a result, our proposed
algorithm works for any linear model η.

3.4 Parameter recovery algorithm

An outline of our parameter recovery algorithm for sLDA (Spectral-sLDA) is given in Alg. 1. First,
empirical estimates of the observable moments in Definition 1 are computed from the given docu-
ments. The simultaneous diagonalization method is then used to reconstruct the topic distribution
matrix O and its prior parameter α. After obtaining O = (µ1, · · · ,µk), we use the power update
method introduced in the previous section to recover the linear regression model η.

Alg. 1 admits three hyper-parameters α0, L and T . α0 is defined as the sum of all entries in the
prior parameter α. Following the conventions in [1, 2], we assume that α0 is known a priori and use
this value to perform parameter estimation. It should be noted that this is a mild assumption, as in
practice usually a homogeneous vectorα is assumed and the entire vector is known [20]. The L and
T parameters are used to control the number of iterations in the robust tensor power method. In gen-
eral, the robust tensor power method runs in O(k3LT ) time. To ensure sufficient recovery accuracy,

1ci is a scalar coefficient that depends on α0 and αi. See Appendix A.2 for details.
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Algorithm 1 spectral parameter recovery algorithm for sLDA. Input parameters: α0, L, T .

1: Compute empirical moments and obtain M̂2, M̂3 and M̂y .
2: Find Ŵ ∈ Rn×k such that M̂2(Ŵ , Ŵ ) = Ik.
3: Find robust eigenvalues and eigenvectors (λ̂i, v̂i) of M̂3(Ŵ , Ŵ , Ŵ ) using the robust tensor

power method [2] with parameters L and T .
4: Recover prior parameters: α̂i ← 4α0(α0+1)

(α0+2)2λ̂2
i

.

5: Recover topic distributions: µ̂i ← α0+2
2 λ̂i(Ŵ

+)>v̂i.
6: Recover the linear regression model: η̂i ← α0+2

2 v̂>i M̂y(Ŵ , Ŵ )v̂i.
7: Output: η̂, α̂ and {µ̂i}ki=1.

L should be at least a linear function of k and T should be set as T = Ω(log(k) + log log(λmax/ε)),

where λmax = 2
α0+2

√
α0(α0+1)
αmin

and ε is an error tolerance parameter. Appendix A.2 and [2] pro-
vide a deeper analysis into the choice of L and T parameters.

3.5 Speeding up moment computation

In Alg. 1, a straightforward computation of the third-order tensor M̂3 requires O(NM3) time and
O(V 3) storage, where N is corpus size and M is the number of words per document. Such time
and space complexities are clearly prohibitive for real applications, where the vocabulary usually
contains tens of thousands of terms. However, we can employ a trick similar as in [11] to speed
up the moment computation. We first note that only the whitened tensor M̂3(Ŵ , Ŵ , Ŵ ) is needed
in our algorithm, which only takes O(k3) storage. Another observation is that the most difficult
term in M̂3 can be written as

∑r
i=1 ciui,1 ⊗ ui,2 ⊗ ui,3, where r is proportional to N and ui,·

contains at most M non-zero entries. This allows us to compute M̂3(Ŵ , Ŵ , Ŵ ) in O(NMk) time
by computing

∑r
i=1 ci(W

>ui,1)⊗ (W>ui,2)⊗ (W>ui,3). Appendix B.2 provides more details
about this speed-up trick. The overall time complexity is O(NM(M + k2) + V 2 + k3LT ) and the
space complexity is O(V 2 + k3).

4 Sample Complexity Analysis
We now analyze the sample complexity of Alg. 1 in order to achieve ε-error with a high probability.
For clarity, we focus on presenting the main results, while deferring the proof details to Appendix A,
including the proofs of important lemmas that are needed for the main theorem.

Theorem 1. Let σ1(Õ) and σk(Õ) be the largest and the smallest singular values of the canonical

topic distribution matrix Õ. Define λmin , 2
α0+2

√
α0(α0+1)
αmax

and λmax , 2
α0+2

√
α0(α0+1)
αmin

with
αmax and αmin the largest and the smallest entries of α. Suppose µ̂, α̂ and η̂ are the outputs of
Algorithm 1, and L is at least a linear function of k. Fix δ ∈ (0, 1). For any small error-tolerance
parameter ε > 0, if Algorithm 1 is run with parameter T = Ω(log(k) + log log(λmax/ε)) on N
i.i.d. sampled documents (each containing at least 3 words) with N ≥ max(n1, n2, n3), where

n1 = C1 ·
(

1 +
√

log(6/δ)
)2
· α

2
0(α0 + 1)2

αmin
, n3 = C3 ·

(1 +
√

log(9/δ))2

σk(Õ)10
·max

(
1

ε2
,
k2

λ2
min

)
,

n2 = C2 ·
(1 +

√
log(15/δ))2

ε2σk(Õ)4
·max

(
(‖η‖+ Φ−1(δ/60σ))2, α2

maxσ1(Õ)2
)
,

and C1, C2 and C3 are universal constants, then with probability at least 1 − δ, there exists a
permutation π : [k]→ [k] such that for every topic i, the following holds:

1. |αi − α̂π(i)| ≤ 4α0(α0+1)(λmax+5ε)
(α0+2)2λ2

min(λmin−5ε)2 · 5ε, if λmin > 5ε;

2. ‖µi − µ̂π(i)‖ ≤
(

3σ1(Õ)
(

8αmax

λmin
+ 5(α0+2)

2

)
+ 1
)
ε;

3. |ηi − η̂π(i)| ≤
(
‖η‖
λmin

+ (α0 + 2)
)
ε.
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Figure 2: Reconstruction errors of Alg. 1. X axis denotes the training size. Error bars denote the
standard deviations measured on 3 independent trials under each setting.

In brevity, the proof is based on matrix perturbation lemmas (see Appendix A.1) and analysis to
the orthogonal tensor decomposition methods (including SVD and robust tensor power method)
performed on inaccurate tensor estimations (see Appendix A.2). The sample complexity lower
bound consists of three terms, from n1 to n3. The n3 term comes from the sample complexity
bound for the robust tensor power method [2]; the (‖η‖ + Φ−1(δ/60σ))2 term in n2 characterizes
the recovery accuracy for the linear regression model η, and the α2

maxσ1(Õ)2 term arises when
we try to recover the topic distribution vectors µ; finally, the term n1 is required so that some
technical conditions are met. The n1 term does not depend on either k or σk(Õ), and could be
largely neglected in practice.

An important implication of Theorem 1 is that it provides a sufficient condition for a supervised
LDA model to be identifiable, as shown in Remark 1. To some extent, Remark 1 is the best identi-
fiability result possible under our inference framework, because it makes no restriction on the linear
regression model η, and the linear independence assumption is unavoidable without making further
assumptions on the topic distribution matrix O.

Remark 1. Given a sufficiently large number of i.i.d. sampled documents with at least 3 words per
document, a supervised LDA modelM = (α,µ,η) is identifiable if α0 =

∑k
i=1 αi is known and

{µi}ki=1 are linearly independent.

We also make remarks on indirected quantities appeared in Theorem 1 (e.g., σk(Õ)) and a simplified
sample complexity bound for some specical cases. They can be found in Appendix A.4.

5 Experiments
5.1 Datasets description and Algorithm implementation details

We perform experiments on both synthetic and real-world datasets. The synthetic data are generated
in a similar manner as in [22], with a fixed vocabulary of size V = 500. We generate the topic
distribution matrix O by first sampling each entry from a uniform distribution and then normalize
every column ofO. The linear regression model η is sampled from a standard Gaussian distribution.
The prior parameter α is assumed to be homogeneous, i.e., α = (1/k, · · · , 1/k). Documents and
response variables are then generated from the sLDA model specified in Sec. 2.1.

For real-world data, we use the large-scale dataset built on Amazon movie reviews [16] to demon-
strate the practical effectiveness of our algorithm. The dataset contains 7,911,684 movie reviews
written by 889,176 users from Aug 1997 to Oct 2012. Each movie review is accompanied with a
score from 1 to 5 indicating how the user likes a particular movie. The median number of words per
review is 101. A vocabulary with V = 5, 000 terms is built by selecting high frequency words. We
also pre-process the dataset by shifting the review scores so that they have zero mean.

Both Gibbs sampling for the sLDA model in Fig. 1 (b) and the proposed spectral recovery algorithm
are implemented in C++. For our spectral algorithm, the hyperparameters L and T are set to 100,
which is sufficiently large for all settings in our experiments. Since Alg. 1 can only recover the
topic model itself, we use Gibbs sampling to iteratively sample topic mixing vectors h and topic
assignments for each word z in order to perform prediction on a held-out dataset.

5.2 Convergence of reconstructed model parameters
We demonstrate how the sLDA model reconstructed by Alg. 1 converges to the underlying true
model when more observations are available. Fig. 2 presents the 1-norm reconstruction errors of α,
η and µ. The number of topics k is set to 20 and the number of words per document (i.e., M ) is set
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Figure 3: Mean square errors and negative per-word log-likelihood of Alg. 1 and Gibbs sLDA.
Each document contains M = 500 words. The X axis denotes the training size (×103).
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Figure 4: pR2 scores and negative per-word log-likelihood. The X axis indicates the number of
topics. Error bars indicate the standard deviation of 5-fold cross-validation.

to 250 and 500. Since Spectral-sLDA can only recover topic distributions up to a permutation over
[k], a minimum weighted graph match was computed on O and Ô to find an optimal permutation.

Fig. 2 shows that the reconstruction errors for all the parameters go down rapidly as we obtain more
documents. Furthermore, though Theorem 1 does not involve the number of words per document,
the simulation results demonstrate a significant improvement when more words are observed in each
document, which is a nice complement for the theoretical analysis.

5.3 Prediction accuracy and per-word likelihood

We compare the prediction accuracy and per-word likelihood of Spectral-sLDA and Gibbs-sLDA
on both synthetic and real-world datasets. On the synthetic dataset, the regression error is measured
by the mean square error (MSE), and the per-word log-likelihood is defined as log2 p(w|h, O) =

log2

∑K
k=1 p(w|z = k,O)p(z = k|h). The hyper-parameters used in our Gibbs sampling imple-

mentation are the same with the ones used to generate the datasets.

Fig. 3 shows that Spectral-sLDA consistently outperforms Gibbs-sLDA. Our algorithm also enjoys
the advantage of being less variable, as indicated by the curve and error bars. Moreover, when the
number of training documents is sufficiently large, the performance of the reconstructed model is
very close to the underlying true model2, which implies that Alg. 1 can correctly identify an sLDA
model from its observations, therefore supporting our theory.

We also test both algorithms on the large-scale Amazon movie review dataset. The quality of the
prediction is assessed with predictive R2 (pR2) [8], a normalized version of MSE, which is defined
as pR2 , 1 − (

∑
i (yi − ŷi)2)/(

∑
i (yi − ȳ)2), where ŷi is the estimate, yi is the truth, and ȳ is

the average true value. We report the results under various settings of α and k in Fig. 4, with the
σ hyper-parameter of Gibbs-sLDA selected via cross-validation on a smaller subset of documents.
Apart from Gibbs-sLDA and Spectral-sLDA, we also test the performance of a hybrid algorithm
which performs Gibbs sampling using models reconstructed by Spectral-sLDA as initializations.

Fig. 4 shows that in general Spectral-sLDA does not perform as well as Gibbs sampling. One
possible reason is that real-world datasets are not exact i.i.d. samples from an underlying sLDA
model. However, a significant improvement can be observed when the Gibbs sampler is initialized
with models reconstructed by Spectral-sLDA instead of random initializations. This is because
Spectral-sLDA help avoid the local optimum problem of local search methods like Gibbs sampling.
Similar improvements for spectral methods were also observed in previous papers [10].

2Due to the randomness in the data generating process, the true model has a non-zero prediction error.
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Table 1: Training time of Gibbs-sLDA and Spectral-sLDA, measured in minutes. k is the number
of topics and n is the number of documents used in training.

k = 10 k = 50
n(×104) 1 5 10 50 100 1 5 10 50 100

Gibbs-sLDA 0.6 3.0 6.0 30.5 61.1 2.9 14.3 28.2 145.4 281.8
Spec-sLDA 1.5 1.6 1.7 2.9 4.3 3.1 3.6 4.3 9.5 16.2

Table 2: Prediction accuracy and per-word log-likelihood of Gibbs-sLDA and the hybrid algorithm.
The initialization solution is obtained by running Alg. 1 on a collection of 1 million documents,
while n is the number of documents used in Gibbs sampling. k = 8 topics are used.

predictive R2 Negative per-word log-likelihood
log10 n 3 4 5 6 3 4 5 6

Gibbs-sLDA 0.00 0.04 0.11 0.14 7.72 7.55 7.45 7.42
(0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Hybrid 0.02 0.17 0.18 0.18 7.70 7.49 7.40 7.36
(0.01) (0.03) (0.03) (0.03) (0.01) (0.02) (0.01) (0.01)

Note that for k > 8 the performance of Spectral-sLDA significantly deteriorates. This phenomenon
can be explained by the nature of Spectral-sLDA itself: one crucial step in Alg. 1 is to whiten the
empirical moment M̂2, which is only possible when the underlying topic matrix O has full rank.
For the Amazon movie review dataset, it is impossible to whiten M̂2 when the underlying model
contains more than 8 topics. This interesting observation shows that the Spectral-sLDA algorithm
can be used for model selection to avoid overfitting by using too many topics.

5.4 Time efficiency
The proposed spectral recovery algorithm is very time efficient because it avoids time-consuming
iterative steps in traditional inference and sampling methods. Furthermore, empirical moment com-
putation, the most time-consuming part in Alg. 1, consists of only elementary operations and could
be easily optimized. Table 1 compares the training time of Gibbs-sLDA and Spectral-sLDA and
shows that our proposed algorithm is over 15 times faster than Gibbs sampling, especially for large
document collections. Although both algorithms are implemented in a single-threading manner,
Spectral-sLDA is very easy to parallelize because unlike iterative local search methods, the moment
computation step in Alg. 1 does not require much communication or synchronization.

There might be concerns about the claimed time efficiency, however, because significant perfor-
mance improvements could only be observed when Spectral-sLDA is used together with Gibbs-
sLDA, and the Gibbs sampling step might slow down the entire procedure. To see why this is not
the case, we show in Table 2 that in order to obtain high-quality models and predictions, only a
very small collection of documents are needed after model reconstruction of Alg. 1. In contrast,
Gibbs-sLDA with random initialization requires more data to get reasonable performances.

To get a more intuitive idea of how fast our proposed method is, we combine Tables 1 and 2 to see
that by doing Spectral-sLDA on 106 documents and then post-processing the reconstructed models
using Gibbs sampling on only 104 documents, we obtain a pR2 score of 0.17 in 5.8 minutes, while
Gibbs-sLDA takes over an hour to process a million documents with a pR2 score of only 0.14.
Similarly, the hybrid method takes only 10 minutes to get a per-word likelihood comparable to the
Gibbs sampling algorithm that requires more than an hour running time.

6 Conclusion
We propose a novel spectral decomposition based method to reconstruct supervised LDA models
from labeled documents. Although our work has mainly focused on tensor decomposition based
algorithms, it is an interesting problem whether NMF based methods could also be applied to obtain
better sample complexity bound and superior performance in practice for supervised topic models.
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