
Appendix A. Proof to Theorem 1

In this section, we prove the sample complexity bound given in Theorem 1. The proof consists of three
main parts. In Appendix A.1, we prove perturbation lemmas that bound the estimation error of the
whitened tensors M2(W,W ),My(W,W ) and M3(W,W,W ) in terms of the estimation error of the tensors
themselves. In Appendix A.2, we cite results on the accuracy of SVD and robust tensor power method
when performed on estimated tensors, and prove the effectiveness of the power update method used in
recovering the linear regression model η. Finally, we give tail bounds for the estimation error of M2,My

and M3 in Appendix A.3 and complete the proof in Appendix A.4. We also make some remarks on
the indirect quantities (e.g. σk(Õ)) used in Theorem 1 and simplified bounds for some special cases in
Appendix A.4.

All norms in the following analysis, if not explicitly specified, are 2 norms in the vector and matrix
cases and the operator norm in the high-order tensor case.

Appendix A.1. Perturbation lemmas

We first define the canonical topic distribution vectors µ̃ and estimation error of observable tensors, which
simplify the notations that arise in subsequent analysis.

Definition 1 (canonical topic distribution). Define the canonical version of topic distribution vector µi,
µ̃i, as follows:

µ̃i ,
√

αi
α0(α0 + 1)

µi. (1)

We also define O, Õ ∈ Rn×k by O = [µ1, · · · ,µk] and Õ = [µ̃1, · · · , µ̃k].

Definition 2 (estimation error). Assume

‖M2 − M̂2‖ ≤ EP , (2)

‖My − M̂y‖ ≤ Ey, (3)

‖M3 − M̂3‖ ≤ ET . (4)

for some real values EP , Ey and ET , which we will set later.

The following lemma analyzes the whitening matrix W of M2. Many conclusions are directly from
[AFH+12].

Lemma 1 (Lemma C.1, [AFH+12]). Let W, Ŵ ∈ Rn×k be the whitening matrices such that M2(W,W ) =

M̂2(Ŵ , Ŵ ) = Ik. Let A = W>Õ and Â = Ŵ>Õ. Suppose EP ≤ σk(M2)/2. We have

‖W‖ =
1

σk(Õ)
, (5)

‖Ŵ‖ ≤ 2

σk(Õ)
, (6)

‖W − Ŵ‖ ≤ 4EP

σk(Õ)3
, (7)

‖W+‖ ≤ 3σ1(Õ), (8)

‖Ŵ+‖ ≤ 2σ1(Õ), (9)

‖W+ − Ŵ+‖ ≤ 6σ1(Õ)

σk(Õ)2
EP , (10)

‖A‖ = 1, (11)

‖Â‖ ≤ 2, (12)
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‖A− Â‖ ≤ 4EP

σk(Õ)2
, (13)

‖AA> − ÂÂ>‖ ≤ 12EP

σk(Õ)2
. (14)

Proof. Proof to Eq. (7): Let Ŵ>M̂2Ŵ = I and Ŵ>M2Ŵ = BDB>, where B is orthogonal and D

is a positive definite diagonal matrix. We then see that W = ŴBD−1/2B> satisfies the condition
WM2W

> = I. Subsequently, Ŵ = WBD1/2B>. We then can bound ‖W − Ŵ‖ as follows

‖W − Ŵ‖ ≤ ‖W‖ · ‖I −D1/2‖ ≤ ‖W‖ · ‖I −D‖ ≤ 4EP

σk(Õ)3
,

where the inequality ‖I −D‖ ≤ 4EP

σk(Õ)2
was proved in [AFH+12].

Proof to Eq. (14): ‖AA>−ÂÂ>‖ ≤ ‖AA>−AÂ>‖+‖AÂ>−ÂÂ>‖ ≤ ‖A−Â‖·(‖A‖+‖Â‖) ≤ 12EP

σk(Õ)2
.

All the other inequalities come from Lemma C.1, [AFH+12].

We are now able to provide perturbation bounds for estimation error of whitened moments.

Definition 3 (estimation error of whitened moments). Define

εp,w , ‖M2(W,W )− M̂2(Ŵ , Ŵ )‖, (15)

εy,w , ‖My(W,W )− M̂y(Ŵ , Ŵ )‖, (16)

εt,w , ‖M3(W,W,W )− M̂3(Ŵ , Ŵ , Ŵ )‖. (17)

Lemma 2 (Perturbation lemma of whitened moments). Suppose EP ≤ σk(M2)/2. We have

εp,w ≤ 16EP

σk(Õ)2
, (18)

εy,w ≤ 24‖η‖EP
(α0 + 2)σk(Õ)2

+
4Ey

σk(Õ)2
, (19)

εt,w ≤ 54EP

(α0 + 1)(α0 + 2)σk(Õ)5
+

8ET

σk(Õ)3
. (20)

Proof. Using the idea in the proof of Lemma C.2 in [AFH+12], we can split εp,w as

εp,w = ‖M2(W,W )−M2(Ŵ , Ŵ ) +M2(Ŵ , Ŵ )− M̂2(Ŵ , Ŵ )‖
≤ ‖M2(W,W )−M2(Ŵ , Ŵ )‖+ ‖M2(Ŵ , Ŵ )− M̂2(Ŵ , Ŵ )‖.

We can the bound the two terms seperately, as follows.
For the first term, we have

‖M2(W,W )−M2(Ŵ , Ŵ )‖ = ‖W>M2W − Ŵ>M̂2Ŵ‖
= ‖AA> − ÂÂ>‖

≤ 12EP

σk(Õ)2
.

where the last inequality comes from Eq. (14)
For the second term, we have

‖M2(Ŵ , Ŵ )− M̂2(Ŵ , Ŵ )‖ ≤ ‖Ŵ‖2 · ‖M2 − M̂2‖ ≤
4EP

σk(Õ)2
,
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where the last inequality comes from Eq. (6).

Similarly, εy,w can be splitted as ‖My(W,W ) −My(Ŵ , Ŵ )‖ and ‖My(Ŵ , Ŵ ) − M̂y(Ŵ , Ŵ )‖, which
can be bounded separately.

For the first term, we have

‖My(W,W )−My(Ŵ , Ŵ )‖ = ‖W>MyW − Ŵ>MyŴ‖

=
2

α0 + 2
‖Adiag(η)A> − Âdiag(η)Â>‖

≤ 2‖η‖
α0 + 2

· ‖AA> − ÂÂ>‖

≤ 24‖η‖
(α0 + 2)σk(Õ)2

· EP .

For the second term, we have

‖My(Ŵ , Ŵ )− M̂y(Ŵ , Ŵ )‖ ≤ ‖Ŵ‖2 · ‖My − M̂y‖ ≤
4Ey

σk(Õ)2
.

Finally, we bound εt,w as below, following the work [CL13].

εt,w = ‖M3(W,W,W )− M̂3(Ŵ , Ŵ , Ŵ )‖
≤ ‖M3‖ · ‖W − Ŵ‖ · (‖W‖2 + ‖W‖ · ‖Ŵ‖+ ‖Ŵ‖2) + ‖Ŵ‖3 · ‖M3 − M̂3‖

≤ 54EP

(α0 + 1)(α0 + 2)σk(Õ)5
+

8ET

σk(Õ)3
,

where we have used the fact that ‖M3‖ ≤
∑k
i=1

2αi

α0(α0+1)(α0+2) = 2
(α0+1)(α0+2) .

Appendix A.2. SVD accuracy

The key idea for spectral recovery of LDA topic modeling is the simultaneous diagonalization trick,
which asserts that we can recover LDA model parameters by performing orthogonal tensor decomposition
on a pair of simultaneously whitened moments, for example, (M2,M3) and (M2,My). The following
proposition details this insight, as we derive orthogonal tensor decompositions for the whitened tensor
product My(W,W ) and M3(W,W,W ).

Proposition 1. Define vi ,W>µ̃i =
√

αi

α0(α0+1)W
>µi. Then

1. {vi}ki=1 is an orthonormal basis.

2. My has a pair of singular value and singular vector (σyi ,vi) with σyi = 2
α0+2ηj for some j ∈ [k].

3. M3 has a pair of robust eigenvalue and eigenvector [AGH+12] (λi,vi) with λi = 2
α0+2

√
α0(α0+1)

αj′

for some j′ ∈ [k].

Proof. The orthonormality of {vi}ki=1 follows from the fact that W>M2W =
∑k
i=1 viv

>
i = Ik. Subse-

quently, we have

My(W,W ) =
2

α0 + 2

k∑
i=1

ηiviv
>
i ,

M3(W,W,W ) =
2

α0 + 2

k∑
i=1

√
α0(α0 + 1)

αi
vi ⊗ vi ⊗ vi.
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The following lemmas (Lemma 3 and Lemma 4) give upper bounds on the estimation error of η and

µ in terms of |λ̂i − λi|, |v̂i − vi| and the estimation errors of whitened moments defined in Definition 3.

Lemma 3 (ηi estimation error bound). Define η̂i ,
α0+2

2 v̂>i M̂y(Ŵ , Ŵ )v̂i, where v̂i is some estimation
of vi. We then have

|ηi − η̂i| ≤ 2‖η‖‖v̂i − vi‖+
α0 + 2

2
(1 + 2‖v̂i − vi‖) · εy,w. (21)

Proof. First, note that v>i My(W,W )vi = 2
α0+2ηi because {vi}ki=1 are orthonormal. Subsequently, we

have

2

α0 + 2
|ηi − η̂i| =

∣∣∣v̂>i M̂y(Ŵ , Ŵ )v̂i − v>i My(W,W )vi

∣∣∣
≤

∣∣∣(v̂i − vi)>M̂y(Ŵ , Ŵ )v̂i

∣∣∣+
∣∣∣v>i (M̂y(Ŵ , Ŵ )v̂i −My(W,W )vi

) ∣∣∣
≤ ‖v̂i − vi‖‖M̂y(Ŵ , Ŵ )‖‖v̂i‖+ ‖vi‖‖M̂y(Ŵ , Ŵ )v̂i −My(W,W )vi‖.

Note that both vi and v̂i are unit vectors. Therefore,

2

α0 + 2
|ηi − η̂i| ≤ ‖M̂y(Ŵ , Ŵ )‖‖v̂i − vi‖+ ‖M̂y(Ŵ , Ŵ )v̂i −My(W,W )vi‖

≤ ‖M̂y(Ŵ , Ŵ )‖‖v̂i − vi‖+ ‖M̂y(Ŵ , Ŵ )‖‖v̂i − vi‖+ ‖M̂y(Ŵ , Ŵ )−My(W,W )‖‖vi‖

≤ 2‖v̂i − vi‖
(

2

α0 + 2
‖η‖+ εy,w

)
+ εy,w.

The last inequality is due to the fact that ‖My(W,W )‖ = 2
α0+2‖η‖.

Lemma 4 (µi estimation error bound). Define µ̂i ,
α0+2

2 λ̂i(Ŵ
+)>v̂i, where λ̂i, v̂i are some estimates

of singular value pairs (λi,vi) of M3(W,W,W ). We then have

‖µ̂i − µi‖ ≤
3(α0 + 2)

2
σ1(Õ)|λ̂i − λi|+ 3αmaxσ1(Õ)‖v̂i − vi‖+

6αmaxσ1(Õ)EP

σk(Õ)2
. (22)

Proof. First note that µi = α0+2
2 λi(W

+)>vi. Subsequently,

2

α0 + 2
‖µi − µ̂i‖ = ‖λ̂i(Ŵ+)>v̂i − λi(W+)>vi‖

≤ ‖λ̂iŴ+ − λiW+‖‖v̂i‖+ ‖λiW+‖‖v̂i − vi‖
≤ |λ̂i − λi|‖Ŵ+‖+ |λi|‖Ŵ+ −W+‖+ |λi|‖W+‖‖v̂i − vi‖

≤ 3σ1(Õ)|λ̂i − λi|+
2αmax

α0 + 2
· 6σ1(Õ)EP

σk(Õ)2
+

2αmax

α0 + 2
· 3σ1(Õ) · ‖v̂i − vi‖.

To bound the error of orthogonal tensor decomposition performed on the estimated tensors M̂3(Ŵ , Ŵ , Ŵ ),
we cite Theorem 5.1 [AGH+12], a sample complexity analysis on the robust tensor power method we used

for recovering λ̂i and v̂i.
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Lemma 5 (Theorem 5.1, [AGH+12]). Let λmax = 2
α0+2

√
α0(α0+1)
αmin

, λmin = 2
α0+2

√
α0(α0+1)
αmax

, where

αmin = minαi and αmax = maxαi. Then there exist universal constants C1, C2 > 0 such that the
following holds: Fix δ′ ∈ (0, 1). Suppose εt,w ≤ ε and

εt,w ≤ C1 ·
λmin

k
, (23)

Suppose {(λ̂i, v̂i)}ki=1 are eigenvalue and eigenvector pairs returned by running Algorithm 1 in [AGH+12]

with input M̂3(Ŵ , Ŵ , Ŵ ) for L = poly(k) log(1/δ′) and N ≥ C2 · (log(k) + log log(λmax

ε )) iterations. With
probability greater than 1− δ′, there exists a permutation π′ : [k]→ [k] such that for all i,

‖v̂i − vπ′(i)‖ ≤ 8ε/λmin, |λ̂i − λπ′(i)| ≤ 5ε.

Appendix A.3. Tail Inequalities

Lemma 6 (Lemma 5, [CL13]). Let x1, · · · ,xN ∈ Rd be i.i.d. samples from some distribution with
bounded support (i.e., ‖x‖2 ≤ B with probability 1 for some constant B). Then with probability at least
1− δ, ∥∥∥∥∥ 1

N

N∑
i=1

xi − E[x]

∥∥∥∥∥
2

≤ 2B√
N

(
1 +

√
log(1/δ)

2

)
.

Corrolary 1. Let x1, · · · ,xN ∈ Rd be i.i.d. samples from some distributions with Pr[‖x‖2 ≤ B] ≥ 1−δ′.
Then with probability at least 1−Nδ′ − δ,∥∥∥∥∥ 1

N

N∑
i=1

xi − E[x]

∥∥∥∥∥
2

≤ 2B√
N

(
1 +

√
log(1/δ)

2

)
.

Proof. Use union bound.

Lemma 7 (concentraion of moment norms). Suppose we obtain N i.i.d. samples (i.e., documents with
at least three words each and their regression variables in sLDA models). Define R(δ) , ‖η‖ + Φ−1(δ),
where Φ−1(·) is the inverse function of the CDF of a standard Gaussian distribution. Let E[·] denote the

mean of the true underlying distribution and Ê[·] denote the empirical mean. Then

1. Pr

[
‖E[x1]− Ê[x1]‖F <

2+
√

2 log(1/δ)√
N

]
≥ 1− δ.

2. Pr

[
‖E[x1 ⊗ x2]− Ê[x1 ⊗ x2]‖F <

2+
√

2 log(1/δ)√
N

]
≥ 1− δ.

3. Pr

[
‖E[x1 ⊗ x2 ⊗ x3]− Ê[x1 ⊗ x2 ⊗ x3]‖F <

2+
√

2 log(1/δ)√
N

]
≥ 1− δ.

4. Pr

[
‖E[y]− Ê[y]‖ < R(δ/4σN) · 2+

√
2 log(2/δ)√
N

]
≥ 1− δ.

5. Pr

[
‖E[yx1]− Ê[yx1]‖F < R(δ/4σN) · 2+

√
2 log(2/δ)√
N

]
≥ 1− δ.

6. Pr

[
‖E[yx1 ⊗ x2]− Ê[yx1 ⊗ x2]‖F < R(δ/4σN) · 2+

√
2 log(2/δ)√
N

]
≥ 1− δ.
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Proof. Use Lemma 6 and Corrolary 1 for concentration bounds involving the regression variable y.

Corrolary 2. With probability 1− δ the following holds:

1. EP = ‖M2 − M̂2‖ ≤ 3 · 2+
√

2 log(6/δ)√
N

.

2. Ey = ‖My − M̂y‖ ≤ 10R(δ/60σN) · 2+
√

2 log(15/δ)√
N

.

3. ET = ‖M3 − M̂3‖ ≤ 10 · 2+
√

2 log(9/δ)√
N

.

Proof. Corrolary 2 can be proved by expanding the terms by definition and then using tail inequality in
Lemma 7 and union bound. Also note that ‖ · ‖ ≤ ‖ · ‖F for all matrices.

Appendix A.4. Completing the proof

We are now ready to give a complete proof to Theorem 1.

Theorem 1 (Sample complexity bound). Let σ1(Õ) and σk(Õ) be the largest and the smallest singu-

lar values of the canonical topic distribution matrix Õ. Define λmin , 2
α0+2

√
α0(α0+1)
αmax

and λmax ,

2
α0+2

√
α0(α0+1)
αmin

where αmax and αmin are the largest and the smallest entries in α. Suppose µ̂, α̂ and

η̂ are the outputs of Algorithm 1, and L is at least a linear function in k. Fix δ ∈ (0, 1). For any small
error-tolerance parameter ε > 0, if Algorithm 1 is run with parameter T = Ω(log(k) + log log(λmax/ε))
on N i.i.d. sampled documents with N ≥ max(n1, n2, n3), where

n1 = C1 ·
(

1 +
√

log(6/δ)
)2
· α

2
0(α0 + 1)2

αmin
, (24)

n2 = C2 ·
(1 +

√
log(15/δ))2

ε2σk(Õ)4
·max

(
(‖η‖+ Φ−1(δ/60σ))2, α2

maxσ1(Õ)2
)
, (25)

n3 = C3 ·
(1 +

√
log(9/δ))2

σk(Õ)10
·max

(
1

ε2
,
k2

λ2min

)
, (26)

and C1, C2 and C3 are universal constants, then with probability at least 1− δ, there exists a permutation
π : [k]→ [k] such that for every topic i, the following holds:

1. |αi − α̂π(i)| ≤ 4α0(α0+1)(λmax+5ε)
(α0+2)2λ2

min(λmin−5ε)2 · 5ε, if λmin > 5ε;

2. ‖µi − µ̂π(i)‖ ≤
(

3σ1(Õ)
(

8αmax

λmin
+ 5(α0+2)

2

)
+ 1
)
ε;

3. |ηi − η̂π(i)| ≤
(
‖η‖
λmin

+ (α0 + 2)
)
ε.

Proof. First, the assumption EP ≤ σk(M2) is required for error bounds on εp,w, εy,w and εt,w. Noting
Corrolary 2 and the fact that σk(M2) = αmin

α0(α0+1) , we have

N = Ω

(
α2
0(α0 + 1)2(1 +

√
log(6/δ))2

α2
min

)
.

Note that this lower bound does not depend on k, ε and σk(Õ).
For Lemma 5 to hold, we need the assumptions that εt,w ≤ min(ε,O(λmin

k )). These imply Eq. (26),

as we expand εt,w according to Definition 3 and note the fact that the first term 54EP

(α0+1)(α0+2)σk(Õ)5
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dominates the second one. The α0 is missing in Eq. (26) because α0 + 1 ≥ 1, α0 + 2 ≥ 2 and we discard

them both. The |αi − α̂π(i)| bound follows immediately by Lemma 5 and the recovery rule α̂i = α0+2
2 λ̂i.

To bound the estimation error for the linear classifier η, we need to further bound εy,w. We assume
εy,w ≤ ε. By expanding εy,w according to Definition 3 in a similar manner we obtain the (‖η‖ +
Φ−1(δ/60σ))2 term in Eq. (25). The bound on |ηi − η̂π(i)| follows immediately by Lemma 3.

Finally, we bound ‖µi − µ̂π(i)‖ using Lemma 4. We need to assume that 6αmaxσ1(Õ)EP

σk(Õ)2
≤ ε, which

gives the α2
maxσ1(Õ)2 term in Eq. (25). The ‖µi− µ̂π(i)‖ bound then follows by Lemma 4 and Lemma 5.

We make some remarks for the main theorem. In Remark 1, we establish links between indirect
quantities appeared in Theorem 1 (e.g., σk(Õ)) and the functions of original model parameters (e.g.,
σk(O)). These connections are straightforward following their definitions.

Remark 1. The indirect quantities σ1(Õ) and σk(Õ) can be related to σ1(O), σk(O) and α in the
following way: √

αmin

α0(α0 + 1)
σk(O) ≤ σk(Õ) ≤

√
αmax

α0(α0 + 1)
σk(O);

σ1(Õ) ≤
√

αmax

α0(α0 + 1)
σ1(O) ≤ 1√

α0 + 1
.

We now take a close look at the sample complexity bound in Theorem 1. It is evident that n2 can be
neglected when the number of topics k gets large, because in practice the norm of the linear regression
model η is usually assumed to be small in order to avoid overfitting. Moreover, as mentioned before, the
prior parameter α is often assumed to be homogeneous with αi = 1/k [SG07]. With these observations,
the sample complexity bound in Theorem 1 can be greatly simplified.

Remark 2. Assume ‖η‖ and σ are small and α = (1/k, · · · , 1/k). As the number of topics k gets large,
the sample complexity bound in Theorem 1 can be simplified as

N = Ω

(
log(1/δ)

σk(Õ)10
·max(ε−2, k3)

)
. (27)

The sample complexity bound in Remark 2 may look formidable as it depends on σk(Õ)10. However,
such dependency is somewhat necessary because we are using third-order tensors to recover the underlying
model parameters. Furthermore, the dependence on σk(Õ)10 is introduced by the robust tensor power

method to recover LDA parameters, and the reconstruction accuracy of η only depends on σk(Õ)4 and
(‖η‖ + Φ−1(δ/60σ))2. As a consequence, if we can combine our power update method for η with LDA

inference algorithms that have milder dependence on the singular value σk(Õ), we might be able to get
an algorithm with a better sample complexity. Such an extension is discussed in Appendix C.1.

Appendix B. Moments of Observable Variables

Appendix B.1. Proof to Proposition 1

The equations on M2 and M3 have already been proved in [AFH+12] and [AGH+12]. Here we only give
the proof to the equation on My. In fact, all the three equations can be proved in a similar manner.

In sLDA the topic mixing vector h follows a Dirichlet prior distribution with parameter α. Therefore,
we have

E[hi] =
αi
α0
,E[hihj ] =

{
α2

i

α0(α0+1) , if i = j,
αiαj

α2
0
, if i 6= j

,E[hihjhk] =


α3

i

α0(α0+1)(α0+2) , if i = j = k,
α2

iαk

α2
0(α0+1)

, if i = j 6= k,
αiαjαk

α3
0

, if i 6= j, j 6= k, i 6= k

(28)
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Next, note that

E[y|h] = η>h, E[x1|h] =

k∑
i=1

hiµi, E[x1 ⊗ x2|h] =

k∑
i,j=1

hihjµi ⊗ µj , (29)

E[yx1 ⊗ x2|h] =

k∑
i,j,k=1

hihjhk · ηkµj ⊗ µk. (30)

Proposition 1 can then be proved easily by taking expectation over the topic mixing vector h.

Appendix B.2. Details of the speeding-up trick

In this section we provide details of the trick mentioned in the main paper to speed up empirical moments
computations. First, note that the computation of M̂1, M̂2 and M̂y only requires O(NM2) time and
O(V 2) space. They do not need to be accelerated in most practical applications. This time and space

complexity also applies to all terms in M̂3 except the Ê[x1 ⊗ x2 ⊗ x3] term, which requires O(NM3)
time and O(V 3) space if using naive implementations. Therefore, this section is devoted to speed-up

the computation of Ê[x1 ⊗ x2 ⊗ x3]. More precisely, as mentioned in the main paper, what we want to

compute is the whitened empirical moment Ê[x1 ⊗ x2 ⊗ x3](Ŵ , Ŵ , Ŵ ) ∈ Rk×k×k.

Fix a document D with m words. Let T , Ê[x1 ⊗x2 ⊗x3|D] be the empirical tensor demanded. By
definition, we have

Ti,j,k =
1

m(m− 1)(m− 2)


ni(nj − 1)(nk − 2), i = j = k;
ni(ni − 1)nk, i = j, j 6= k;
ninj(nj − 1), j = k, i 6= j;
ninj(ni − 1), i = k, i 6= j;
ninjnk, otherwise;

(31)

where ni is the number of occurrences of the i-th word in document D. If Ti,j,k =
ninjnk

m(m−1)(m−2) for all

indices i, j and k, then we only need to compute

T (W,W,W ) =
1

m(m− 1)(m− 2)
· (Wn)⊗3,

where n , (n1, n2, · · · , nV ). This takes O(Mk + k3) computational time because n contains at most M
non-zero entries, and the total time complexity is reduced from O(NM3) to O(N(Mk + k3)).

We now consider the remaining values, where at least two indices are identical. We first consider
those values with two indices the same, for example, i = j. For these indices, we need to subtract an
nink term, as shown in Eq. (31). That is, we need to compute the whitened tensor ∆(W,W,W ), where
∆ ∈ RV×V×V and

∆i,j,k =
1

m(m− 1)(m− 2)
·
{
nink, i = j;
0, otherwise.

(32)

Note that ∆ can be written as 1
m(m−1)(m−2) ·A⊗n, where A = diag(n1, n2, · · · , nV ) is a V ×V matrix

and n = (n1, n2, · · · , nV ) is defined previously. As a result, ∆(W,W,W ) = 1
m(m−1)(m−2) · (W

>AW )⊗n.

So the computational complexity of ∆(W,W,W ) depends on how we compute W>AW . Since A is a
diagonal matrix with at most M non-zero entries, W>AW can be computed in O(Mk2) operations.
Therefore, the time complexity of computing ∆(W,W,W ) is O(Mk2) per document.

Finally we handle those values with three indices the same, that is, i = j = k. As indicated by
Eq. (31), we need to add a 2ni

m(m−1)(m−2) term for compensation. This can be done efficiently by first

computing Ê( 2ni

m(m−1)(m−2) ) for all the documents (requiring O(NV ) time), and then add them up, which

takes O(V k3) operations.
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Appendix C. Discussions

Appendix C.1. Extension to other topic recovery algorithms

One important advantage of our proposed inference algorithm is its flexibility—the algorithm can be
combined with many other LDA inference algorithms to infer supervised LDA model parameters. More
specifically, given access to any algorithm that recovers the topic distribution matrix O and the prior
parameter α from i.i.d. sampled documents, an inference algorithm for a supervised LDA model can be
immediately obtained, as shown in Algorithm 1.

Algorithm 1 sLDA parameter recovery based on an existing LDA inference algorithm A. Input param-
eter: α0.

1: Compute empirical moments and obtain M̂2, M̂y. Set η̂ = 0.

2: Find Ŵ ∈ Rn×k such that M̂2(Ŵ , Ŵ ) = Ik.
3: Run algorithmA with observed documents and parameter α0. Obtain the estimated topic distribution

matrix Ô = (µ̂1, · · · , µ̂k) and prior parameter α̂.

4: Compute v̂i =
√

α̂i

α0(α0+1)Ŵ
>µ̂i for each topic i.

5: Recover linear classifier: η̂i ← α0+2
2 v̂>i M̂y(Ŵ , Ŵ )v̂i.

6: Output: η̂, α and {µ̂i}ki=1.

The sample complexity of Algorithm 1 depends on the sample complexity of the LDA inference
algorithm A. Although the LDA inference algorithm A is free to make any assumptions on the topic
distribution matrix O, we comment that the linear independence of topic distribution vectors µ is still
required, because the power update trick (step 5 in Algorithm 1) is valid only Wµi are orthogonal vectors.

Appendix C.2. Going beyond SVD

The proposed methods are based on spectral decomposition of observable moments and are provably
correct. However, a major drawback of these methods is their assumption that the topic distributions µ
are linearly independent. Although standard LDA models assume this topic independence [BNJ03], in
practice there is strong evidence that different topics might be related [BL12]. Therefore, it is important
to consider possible extensions.

Recently, there has been much work on provable LDA inference algorithms that do not require the
topic independence assumption [AGH+13, AGM12]. Instead of making the independence assumption,
these methods assume a p-separability condition on the topic distribution matrix, that is, there exists
an anchor word for each topic such that the anchor word only appears in this specific topic, and its
probability (given that topic) is at least p.

Here we briefly describe an idea that might lead to an sLDA inference algorithm without assuming
topic independence. First, let O ∈ RV×k be the topic distribution matrix defined previously and H =
(h1, · · · ,hN ) ∈ Rk×N be the matrix of topic mixing vectors for each document. Suppose Q = E[x1x

>
2 ] is

the word co-occurrence frequency matrix and Qy = E[yx1] is the co-occurrence frequency matrix between
word and regression variable observations. It is clear that both Q and Qy can be estimated from the
training data, and we have

Q = ORO>, Qy = ORη, (33)

where R , E[HH>].
Assuming the p-separability condition holds and using methods developed in [AGM12, AGH+13], we

can consistently recover the O and R. Now note that Qy = (OR) · η. As a result, knowing both OR and
Qy we reduce the η inference problem to solving a linear equation systems. Future research could be
done on (1) determining when the matrix OR has full rank r so that the linear equations can be solved,
and (2) investigating the sample complexity problem for such an inference algorithm.
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Appendix C.3. From regression to classification

A natural extension to our result is to consider supervised LDA models for classification purposes. The
simplest model is a logistic regression classification model, where we assume the response variable yd for
each document d is in {+1,−1}, and

Pr[yd = 1|hd] =
exp(η>hd)

1 + exp(η>hd)
,

where η is a linear classifier.
Though appears simple, such an extension incurs many fundamental problems. A major obstacle is

the fact that the conditional expectation E[y|h] is no longer linear in the topic mixing vector h. As a
result, we cannot even evaluate E[y] (or higher order tensors like E[yx1 ⊗ x2]) in closed forms. Further
more, even if we have accurate estimation to the above moments, it is rather difficult to infer η back due
to its non-linearality. To our knowledge, the classification problem remains unsolved in terms of spectral
decomposition methods, and there is doubt whether a provably correct algorithm exists in such scenarios.
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