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Abstract

Subspace clustering is the problem of clus-
tering data points into a union of low-
dimensional linear/affine subspaces. It is the
mathematical abstraction of many important
problems in computer vision, image process-
ing and machine learning. A line of recent
work [4, 19, 24, 20] provided strong theo-
retical guarantee for sparse subspace cluster-
ing [4], the state-of-the-art algorithm for sub-
space clustering, on both noiseless and noisy
data sets. It was shown that under mild con-
ditions, with high probability no two points
from different subspaces are clustered to-
gether. Such guarantee, however, is not suf-
ficient for the clustering to be correct, due to
the notorious “graph connectivity problem”
[15]. In this paper, we investigate the graph
connectivity problem for noisy sparse sub-
space clustering and show that a simple post-
processing procedure is capable of delivering
consistent clustering under certain “general
position” or “restricted eigenvalue” assump-
tions. We also show that our condition is
almost tight with adversarial noise pertur-
bation by constructing a counter-example.
These results provide the first exact cluster-
ing guarantee of noisy SSC for subspaces of
dimension greater then 3.

1 INTRODUCTION

The problem of subspace clustering originates from nu-
merous applications in computer vision and image pro-
cessing, where there are either physical laws or empir-
ical evidence that ensure a given set of data points to
form a union of linear or affine subspaces. Such data
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points could be feature trajectories of rigid moving ob-
jects captured by an affine camera [4], articulated mov-
ing parts of a human body [27], illumination of differ-
ent convex objects under Lambertian model [9] and so
on. Subspace clustering is also more generically used in
agnostic learning of the best linear mixture structures
in the data. For instance, it is used for images/video
compression [10], hybrid system identification, disease
identification [14] as well as modeling social network
communities [3], studying privacy in movie recommen-
dations [28] and inferring router network topology [5].

There is rich literature on algorithmic and theoret-
ical analysis of subspace clustering [4, 12, 8, 17].
Among the many algorithms, sparse subspace cluster-
ing (SSC) [4] is arguably the most well-studied due to
its elegant formulation, strong empirical performance
and provable guarantees to work under relatively weak
conditions. The algorithm involves constructing a
sparse linear representation of each data point using
the remaining dataset as a dictionary. This approach
embeds the relationship of the data points into a sparse
graph and the intuition is that the data points are
likely to choose only those points on the same sub-
space to linearly represent itself. Then clustering can
be obtained by finding connected components of the
graph, or more robustly, using spectral clustering [4].

Assuming data lie exactly or approximately on a union
of linear subspaces, 1 it is shown in [4, 19, 24, 20]
that under certain separation conditions, this embed-
ded graph will have no edges between any two points in
different subspaces. This criterion of success is referred
to as the “Self-Expressiveness Property (SEP)” [4, 24]
and “Subspace Detection Property (SDP)” [19]. The
drawback is that there is no guarantee that the ver-
tices within one cluster form a connected component.
Therefore, the solution may potentially over segment
the data points. This subtle point was originally raised
and partially addressed in [15], reaching an answer
that when data are noiseless and intrinsic subspace
dimension d ≤ 3, such over-segmentation will not oc-
cur as long as all points within the same subspace are

1affine subspaces are handled by augmenting 1 to every
data point.
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in general position; but when d ≥ 4, a counter ex-
ample was provided, showing that this weak “general
position” condition is no longer sufficient.

In this paper, we revisit the graph connectivity prob-
lem for noisy sparse subspace clustering. Inspired
by the post-merging step presented in [4] for noise-
less data, we propose in this paper a variant of noisy
sparse subspace clustering [25] that provably produces
perfect clustering with high probability, under certain
“general position” or “restricted eigenvalue” assump-
tions. We also provide a counter-example to show that
our derived success conditions are almost tight under
the adversarial noise perturbation model. This is the
first time a subspace clustering algorithm is proven
to give correct clustering under no statistical assump-
tions on data corrupted by noise. To the best of our
knowledge, this is also the first guarantee for Lasso
that lower bounds the number of discoveries, which
might be of independent interest for other problems
that uses Lasso as a subroutine.

1.1 Problem setup and notations

For a vector x we use ‖x‖p = (
∑
i x

p
i )

1/p to denote
its p-norm. If p is not explicitly specified then the 2-
norm is used. The noiseless data matrix is denoted
as X = (x1, · · · ,xN ) ∈ Rn×N where n is the am-
bient dimension and N denotes the number of data
points available. Each data point xi ∈ Rn is normal-
ized so that it has unit two norm. We use S ⊆ Rn
to denote a low-dimensional linear subspace in Rn and
S ∈ Rn×d for an orthonormal basis of S, where d is
the intrinsic rank of S. For subspace clustering it is
assumed that each data point xi lies on a union of un-
derlying subspaces

⋃L
`=1 S(`) with intrinsic dimensions

d1, · · · , dL < n. We use z1, · · · , zN ∈ {1, 2, · · · , L} to
denote the ground truth cluster assignments of each
data point in X and X(`) = {xi ∈ X : zi = `}
to denote all data points in the `th cluster. Define
d(xi,S) = infy∈S ‖x− y‖2 as the distance between a
point x and a linear subspace S. Since X is noiseless,
we have d(xi,S(zi)) = 0. The objective of subspace
clustering is to recover {S(`)}L`=1 and {zi}Ni=1 up to
permutations.

Under the fully deterministic data model [19] no ad-
ditional stochastic model is assumed on either the un-
derlying subspaces or the data points. For noisy sub-
space clustering we observe a noise-perturbed matrix
Y = (y1, · · · ,yN ) ∈ Rn×N where yi = xi + εi. The
noise variables {εi}Ni=1 considered previously can be ei-
ther deterministic (i.e., adversarial) or stochastic (e.g.,
Gaussian white noise) [24, 20].

Given ground-truth clustering {zi}Ni=1 ⊆ {1, · · ·L},
a similarity graph C ∈ RN×N satisfies Self-

Table 1: The hierarchies of assumptions on the sub-
spaces. A: independent subspaces; B: disjoint
subspaces*; C: overlapping subspaces*. Note that
A ⊂ B ⊂ C. Superscript ∗ indicates that additional
separation conditions are needed.

A dim [S1 ⊗ ...⊗ SL] =
∑L
`=1 dim [S`].

B S` ∩ S`′ = 0 for all {(`, `′)|` 6= `′}.
C dim(S` ∩ S`′) < min {dim(S`),dim(S`′)}

for all {(`, `′)|` 6= `′}.

Table 2: Reference of assumptions on data points.
Columns correspond to data point generation assump-
tions and rows correspond to different noise regimes.

1. Semi-Random 2.Deterministic
a. noiseless εi = 0 εi = 0

b. stochastic εi ∼ N (0, σ2I) εi ∼ N (0, σ2I)
c. adversarial ‖εi‖2 ≤ ξ ‖εi‖2 ≤ ξ

Expressiveness Property (SEP, [4]) if |Cij | > 0 implies
zi = zj . Note that the reverse is not necessarily true.
That is, zi = zj does not imply |Cij | > 0.

2 RELATED WORK

The pursuit of provable subspace clustering methods
has seen much progress recently. Theoretical guaran-
tees for several algorithms have been established in
many regimes. At times it may get confusing what
these results actually mean. In this section, we first
review the different assumptions and claims in the lit-
erature and then pinpoint what our contributions are.

Table 1 lists the hierarchies of assumptions on the sub-
spaces. Each row is weaker than its previous row. Ex-
cept for the independent subspace assumption, which
on its own is sufficient, results for more general mod-
els typically require additional conditions on the sub-
spaces and data points in each subspaces. For in-
stance, the “semi-random model” assumes data points
to be drawn i.i.d. uniformly at random from the unit
sphere in each subspace and the more generic “de-
terministic model” places assumptions on the radius
of the smallest inscribing sphere of the symmetric
polytope spanned by data points [19] or the small-
est non-zero singular value of the data matrix [26].
Related theoretical guarantees of subspace clustering
algorithms in the literature are summarized in Table 3
where the assumptions about subspaces are denoted
with capital letters “A, B, C”; different noise settings
are referred to using lowercase letters “a,b,c” in Ta-
ble 2. Results that are applicable to SSC are high-
lighted.

As we can see from the second column of Table 3,
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SEP guarantees have been quite exhaustively studied
and now we understand very well the conditions un-
der which it holds. Specifically, most of the results
are now near optimal under the semi-random model:
SEP holds in cases even when different subspaces sub-
stantially overlap, have canonical angles near 0, the
dimension of the subspaces being linear in the ambient
dimension, or the number of subspaces to be clustered
is exponentially large [19, 24, 20]. In addition, the
above results also hold robustly under a small amount
of arbitrary perturbation or a large amount of stochas-
tic noise [24]. In particular, it was shown in [24] that
the amount of tolerable stochastic noise could even be
substantially larger than the signal in both determin-
istic and semi-random models.

Nevertheless, the above-mentioned results do not rule
out cases when the subgraph of each subspace is not
well connected. For instance, an empty graph triv-
ially obeys SEP. As a less trivial example, if we con-
nect points in each subspace in disjoint pairs, then the
degree of every node will be non-zero, yet the graph
does not reveal much information for clustering. It
is not hard to construct a problem such that Lasso-
SSC will output exactly this. For the original noiseless
SSC, the problem becomes trickier since the solution
is more constrained. In [15] it was shown that when
subspace dimension is no larger than 3, SSC outputs
block-wise connected similarity graph under very mild
conditions; however, the graph connectivity is easily
broken when subspace dimension exceeds 3. Though a
simple post-processing step was remarked in [4, Foot-
note 6 in Section 5] to alleviate the graph connectivity
issue on noiseless data, it is unclear how to extend
their method when data are corrupted by noise.

Among other subspace clustering methods, [17] and [7]
are the only two papers that provide provable exact
clustering guarantees for problems beyond indepen-
dent subspaces (for which LRR provably gives dense
graphs [26]). Their results however rely critically on
the semi-random model assumption. For instance, [7]
uses the connectivity of a random k-nearest neighbor
graph on a sphere to facilitate an argument for cluster-
ing consistency. In addition, these approaches do not
easily generalize to SSC even under the semi-random
model since the solution of SSC is considerably harder
to characterize. In contrast, our results are much sim-
pler and work generically without any probabilistic as-
sumptions.

Lastly, there is a long line of research on “projective
clustering” in the theoretical computer science litera-
ture [11, 6]. Unlike subspace clustering that posits an
approximate union-of-subspace model, projective clus-
tering makes no assumption on the data points and is
completely agnostic. The algorithms [11, 6] are typ-

Table 3: Summary of existing theoretical guarantees.
(*) denotes results from this paper.

Algorithm SEP Exact clustering
LRR [12] A-2-a A-2-a
SSC [4] B-2-a -
SSC [19] C-{1,2}-a -
Noisy SSC [24] C-{1,2}-{a,b,c} -
Robust SSC [20] C-1-{a,b} -
LRSSC [26] C-{1,2}-a A-{1,2}-a
Thresh. SC [8] C-1-a -
Robust TSC [7] C-1-{a,b} C-1-{a,b}
Greedy SC [17] C-1-a C-1-a
SSC (*) C-{1,2}-{a,b,c} C-{1,2}-{a,b,c}

ically based on random projection and core-set type
techniques, which are exponential in number of sub-
spaces and/or subspace dimension. On the other hand,
SSC based algorithms are strongly polynomial time in
all model parameters.

3 CLUSTERING CONSISTENT SSC

In this section, we present and analyze variants of
SSC algorithms that outputs consistent clustering with
high probability. As a warm-up exercise, we first con-
sider the case when data are noiseless and formally es-
tablish success conditions for a simple post-processing
procedure remarked in [4]. We then move on to our
main result in Sec. 3.2, a robustified version of cluster-
ing consistent SSC that enjoys perfect clustering con-
dition on data perturbed by a small amount of adver-
sarial noise. Finally, we construct a counter-example,
which shows that our success condition cannot be sig-
nificantly improved under the adversarial noise model.

3.1 The noiseless case

We first review the procedure of vanilla noiseless
Sparse Subspace Clustering (SSC, [4, 19]). The first
step is to solve the following `1 optimization problem
for each data point xi in the input matrix X:

min
ci∈RN

‖ci‖1, s.t. xi = Xci, cii = 0. (3.1)

Afterwards, a similarity graph C ∈ RN×N is con-
structed as Cij = |[c∗i ]j | + |[c∗j ]i|, where {c∗i }Ni=1 are
optimal solutions to Eq. (3.1). Finally, spectral clus-
tering algorithms (e.g., [16]) are applied on the sim-
ilarity graph C to cluster the N data points into L
clusters as desired. Much work has shown that the sim-
ilarity graph C satisfies SEP under various data and
noise regimes [4, 19, 24, 20]. However, as we remarked
earlier, SEP alone does not guarantee perfect cluster-
ing because the obtained similarity graph C could be
poorly connected [15]. In fact, little is known prov-
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Algorithm 1 Clustering consistent noiseless SSC

1: Input: the noiseless data matrix X.
2: Initialization: Normalize each column of X so

that it has unit two norm.
3: Sparse subspace clustering: Solve the opti-

mization problem in Eq. (3.1) for each data point
and obtain the similarity matrix C ∈ RN×N . De-
fine an undirected graph G = (V,E) with N nodes
and (i, j) ∈ E if and only if Cij > 0.

4: Subspace recovery: For each connected com-
ponent Gr = (Vr, Er) ⊆ G, compute Ŝ(r) =
Range(XVr

) using any convenient linear algebraic
method. Let {Ŝ(`)}L`=1 be the L unique subspaces

in {Ŝ(r)}r.
5: Final clustering: for each connected component
Vr with Ŝ(r) = Ŝ(`), set ẑi = ` for all points in Vr.

6: Output: cluster assignments {ẑi}Ni=1 and recov-

ered subspaces {Ŝ(`)}L`=1.

ably in terms of the final clustering result albeit the
practical success of SSC.

We now analyze a simple post-processing procedure
of the SSC algorithm (pseudocode displayed in Al-
gorithm 1), which was briefly remarked in [4]. We
formally establish that with the additional post-
processing step the algorithm achieves consistent
clustering under mild “general-position” conditions.
This simple observation completes previous theoreti-
cal analysis of SSC by bridging the gap between SEP
and clustering consistency.

The general position condition is formally defined in
Definition 3.1, which concerns the distribution of data
points within a single subspace. Intuitively, it requires
that no subspace contains data points that are in “de-
generate” positions. Similar assumptions were made
for the analysis of some algebraic subspace clustering
algorithms such as GPCA [23]. The generally posi-
tioned data assumption is very mild and is almost al-
ways satisfied in practice. For example, it is satisfied
almost surely if data points are i.i.d. generated from
any continuous underlying distribution.

Definition 3.1 (General position). Fix ` ∈
{1, · · · , L}. We say X(`) is in general position if for
all k ≤ d`, any subset of k data points (columns)
in X(`) are linearly independent. We say X is in
general position if X(`) is in general position for all
` = 1, · · · , L.

With the self-expressiveness property and the addi-
tional assumption that the data matrix X is in general
position, Theorem 3.1 proves that both the cluster-
ing assignments {ẑi}Ni=1 and the recovered subspaces

{Ŝ(`)}L`=1 produced by Algorithm 1 are consistent with

Algorithm 2 Clustering consistent noisy SSC

1: Input: noisy input matrix Y, number of sub-
spaces L, intrinsic dimension d and tuning param-
eter λ.

2: Initialization: Normalize each column of X so
that it has unit two norm.

3: Noisy SSC: Solve the optimization problem in
Eq. (3.2) with parameter λ for each data point and
obtain the similarity matrix C ∈ RN×N . Define an
undirected graph G = (V,E) with N nodes and
(i, j) ∈ E if and only if Cij > 0.

4: Subspace recovery: For each connected compo-
nent Gr = (Vr, Er) ⊆ G with |Vr| ≥ d, randomly
pick Vr,d ⊆ Vr containing exactly d points in Vr
and compute Ŝ(r) = Range(XVr,d

).
5: Subspace merging: Compute the angular dis-

tance d(Ŝ(r), Ŝ(r′)) as in Eq. (3.3) for each pair
(r, r′). Merge subspaces via single linkage cluster-
ing with respect to d(·, ·), until there are exactly L
subspaces.

6: Output: cluster assignment {ẑi}Ni=1, with ẑi = ẑj
if and only if data points i and j are in the same
merged subspace.

the ground truth up to permutations.

Theorem 3.1 (SSC clustering success condition). As-
sume X is in general position and no two underlying
subspaces are identical. Let {ẑi}Ni=1 and {Ŝ(`)})L`=1 be
the output of Algorithm 1. If the similarity graph C
satisfies the self-expressiveness property as defined in
Sec. 1.1, then there exists a permutation π on [L] such
that π(ẑi) = zi and Ŝ(`) = S(π(`)) for all i = 1, · · · , N
and ` = 1, · · · , L.

The correctness of Theorem 3.1 is quite straightfor-
ward and hence we defer its complete proof to Ap-
pendix A. We also make some comments on the
general identifiability and the potential application of
`0 optimization on union-of-subspace structured data.
As these remarks are only loosely connected to our
main results, we state them in Appendix B. Finally
we remark that Algorithm 1 only works when the in-
put data are not corrupted by noise. A non-trivial
robust extension is provided in the next section.

3.2 The noisy case

In this section we adopt a noisy input model Y =
X + E where X is the noiseless design matrix and Y
is the noisy input that is observed. The noise matrix
E = (ε1, · · · , εN ) is assumed to be deterministic with
‖εi‖2 ≤ ξ for every i = 1, · · · , N and some noise mag-
nitude parameter ξ > 0. For noisy inputs Y a Lasso
formulation as in Eq. (3.2) is employed for every data
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point yi. Choices of the tuning parameter λ and SEP
success conditions for Eq. (3.2) have been comprehen-
sively characterized in [24] and [20].

min
ci∈RN

1

2
‖yi −Yci‖22 + λ‖ci‖1, (3.2)

s.t. cii = 0.

We first propose a variant of noisy subspace cluster-
ing algorithm (pseudocode listed in Algorithm 2) that
resembles Algorithm 1 for the noiseless setting. For
simplicity we assume all underlying subspaces share
the same intrinsic dimension d which is known a pri-
ori. The key difference between Algorithm 1 and 2 is
that we can no longer unambiguously identify L unique
subspaces due to the data noise. Instead, we employ
a single linkage clustering procedure that merges the
estimated subspaces that are close with respect to the
“angular distance” measure between two subspaces,
which is defined as

d(S,S ′) := ‖ sin Φ(S,S ′)‖2F =

d∑
i=1

sin2 φi(S,S ′),

(3.3)
where {φi(S,S ′)}di=1 are canonical angles between two
d-dimensional subspace S and S ′. The angular dis-
tance is closely related to the concept of subspace affin-
ity defined in [19, 24]. In fact, one can show that
d(S,S ′) = d − aff(S,S ′)2 when both S and S ′ are d-
dimensional subspaces.

In the remainder of this section we present a theorem
that proves clustering consistency of Algorithm 2. Our
key assumption is a restricted eigenvalue assumption,
which imposes a lower bound on the smallest singular
value of any subset of d data points within an under-
lying subspace.

Assumption 3.1 (Restricted eigenvalue assumption).
Assume there exist constants {σ`}L`=1 such that for ev-
ery ` = 1, · · · , L the following holds:

min
Xd=(x1,··· ,xd)⊆X(`)

σd(Xd) ≥ σ` > 0, (3.4)

where Xd is taken over all subsets of d data points
in the `th subspace and σd(·) denotes the dth singular
value of an n× d matrix.

Note that Assumption 3.1 can be thought of as a
robustified version of the “general position” assump-
tion in the noiseless case. It requires X to be not
only in general position, but also in general position
with a spectral margin that is at least σ`. In [4] a
slightly weaker version of the presented assumption
was adopted for the analysis of sparse subspace clus-
tering. We remark further on the related work of re-
stricted eigenvalue assumption at the end of this sec-
tion.

We continue to introduce the concept of inradius,
which characterizes the distribution of data points
within each subspace and is previously proposed to
analyze the SEP success conditions of sparse subspace
clustering [19, 24].

Definition 3.2 (Inradius, [19, 24]). Fix ` ∈
{1, · · · , L}. Let r(Q) denote the radius of the largest
ball inscribed in a convex body Q. The inradius ρ` is
defined as

ρ` = min
1≤i≤N`

ρ−i` = min
1≤i≤N`

r(conv(±x(`)
1 , · · · ,±x(`)

i−1,

± x(`)
i+1,±x

(`)
N`

)), (3.5)

where conv(·) denotes the convex hull of a given point
set.

Note that the inradius ρ` is strictly between 0 and 1.
The larger ρ` is, the more uniform data points are dis-
tributed in the `th cluster. With the restricted eigen-
value assumption and definition of inradius, we are
now ready to present the main theorem of this section
which shows that Algorithm 2 returns consistent clus-
tering when some conditions on the design matrix, the
noise level and range of parameters are met.

Theorem 3.2. Assume Assumption 3.1 holds and fur-
thermore, for all `, `′ ∈ {1, · · · , L}, ` 6= `′, the follow-
ing holds:

d(S(`),S(`
′)) >

8dξ2

min1≤t≤L σ2
t

; (3.6)

ξ < min

{
1,

ρ2`σ`
16(1 + ρ`)

}
. (3.7)

Assume also that the self-expressiveness property holds
for the similarity matrix C constructed by Algorithm
2. If algorithms parameter λ satisfies

2ξ(1 + ξ)2(1 + 1/ρ`) < λ <
ρ`σ`

2
(3.8)

for every ` ∈ {1, · · · , L}, then the clustering {ẑi}Ni=1

output by Algorithm 2 is consistent with the ground-
truth clustering {zi}Ni=1; that is, there exists a permu-
tation π on {1, · · · , L} such that π(ẑi) = zi for every
i = 1, · · · , N .

A complete proof of Theorem 3.2 is given in Section
C. Below we make several remarks to highlight the
nature and consequences of the theorem.

Remark 1 Let (λmin, λmax) be the feasible range
of λ as shown in Eq. (3.8) in Theorem 3.2. It can
be shown that limξ→0 λmin = 0 and limξ→0 λmax =
min` ρ`σ`/2 > 0 as long as σ` > 0 for all ` ∈
{1, · · · , L}; that is, X is in general position. There-
fore, the success condition in Theorem 3.2 reduces to
the one in Theorem 3.1 on noiseless data when noise
diminishes.
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Remark 2 In [24] another range (λ′min, λ
′
max) on λ is

given for success conditions of the self-expressiveness
property. One can show that limξ→0 λ

′
min = 0 and

limξ→0 λ
′
max = min` ρ` > 0. Therefore, the feasible

range of λ for both SEP and Theorem 3.2 to hold is
nonempty, at least for sufficiently low noise level ξ. In
addition, the limiting values of λmax and λ′max differ by
a factor of σ`/2 and the maximum tolerable signal-to-
noise ratio on ξ differs too by a similar factor of O(σ`),
which suggests the difficulty of consistent clustering
as opposed to merely SEP for noisy sparse subspace
clustering. In fact, in Sec. 3.3 we construct a counter-
example showing that this dependency on σ` cannot
be improved under the adversarial noise model.

Remark 3 Some components of Algorithm 2 can be
revised to make the method more robust in practi-
cal applications. For example, instead of randomly
picking d points and computing their range, one could
apply robust PCA on all points in the connected com-
ponent, which is more robust to potential outliers. In
addition, the single linkage clustering step could be re-
placed by k-means clustering, which is more robust to
false connections in practice.

Remark 4 There has been extensive study of us-
ing restricted eigenvalue assumptions in the analysis
of Lasso-type problems [1, 13, 2, 18]. However, in
our problem the assumption is used in a very different
manner. In particular, we used the restricted eigen-
value assumption to prove one key lemma (Lemma
C.2) that lower bounds the support size of the opti-
mal solution to a Lasso problem. Such results might
be of independent interest as a nice contribution to the
analysis of Lasso in general.

3.3 Discussion on Assumption 3.1

Assumption 3.1 requires a spectral gap for every sub-
set of data points in each subspace. This seems a very
strong assumption that restricts the maximum tolera-
ble noise magnitude to be very small. In this section,
we show that this dependency on σ` is actually nec-
essary for noisy SSC in the adversarial noise setting,
which suggests that our bound in Theorem 3.2 is sharp.

Proposition 3.1. There is a subspace clustering prob-
lem X ∈ Rn×N and a noise configuration E ∈ Rn×N
obeying adversarial noise level ξ := ‖E‖2,∞ ≤ σ`√

d
for

some subspace ` and intrinsic dimension d, such that
noiseless SSC is clustering consistent on X, but noisy
SSC on Y = X+E cannot perform better than random
guessing.

Proof. It suffices to come up with one such example.
For the sake of simplicity we take intrinsic dimension

d = 2 with L = 4 clusters. 2 Consider a 2-dimensional
subspace S1 in Rn with orthogonal basis U1 ∈ Rn×2
and assume there are 4 data points on the subspace
represented by

X(1) = U1Z = U1

[
1 −1 ε ε
ε ε 1 −1

]
.

The minimum singular value for the first two points
is σ` =

√
2ε. This is also the minimum singular value

of any pairs of the given points in the subspace. By
taking ξ = ε = σ`/

√
2, we can contaminate the data

with E to obtain observation data matrix Y as

Y(1) = U1Z + E =

[
1 −1 0 0
0 0 1 −1

]
.

Assume there is another subspace S2 ⊥ S1 with the
four data points X(2) = U2Z, and we contaminate
them in the same fashion into Y(2). Noiseless SSC
on X is trivially clustering consistent by Theorem 3.1.
Noisy SSC on Y however will construct a graph that
has exactly 4 connected components with any λ that
returns a non-zero solution. These are:

{1, 2}, {3, 4}, {5, 6}, {7, 8}

Spectral clustering algorithms that tries to partition
the graph into 2 parts will not be able to work bet-
ter than random labeling. Similarly, Algorithm 2 will
also fail because the subspace spanned by the noisy
data points in each connected components are mutu-
ally orthogonal, and no “merging” procedure will be
able to consistently recover the original subspace as-
signments.

The high level idea of this example is that σ` mea-
sures how close the data points in subspace ` are from
violating the general position assumption and there-
fore with an arbitrary perturbation of magnitude σ`,
we can change at least d points to lie in an (d − 1)-
dimensional subspace, which renders the original prob-
lem non-identifiable.

Remark 5 For any intrinsic dimension d ≥ 2, we can
construct a set of d points in general position where
one only needs to perturb each data point by σ`/

√
d to

made them lie in a d− 1 dimensional subspace space.
Fix any orthonormal basis of Rd (without loss of gen-
erality we work under the standard basis [e1, · · · , ed]).
The d points are linear combinations of these basis
with coefficients[

β1 β2 ... βd
σ`/
√
d σ`/

√
d ... σ`/

√
d

]
2The construction of this counter-example can be easily

extended to general d cases, as we remark later.
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Figure 1: An illustration of counter-examples constructed in Proposition 3.1. Left: a 2D example. Right: a
3D example. The arrows in blue represent the noiseless data in general position. The arrows in red illustrate
how a small perturbation of size σ`/

√
d can potentially break the general position assumption.

where we set {βi} to be the d vertices of a symmetric
simplex in Rd−1 with centroid at the origin. Just to
give a few examples, in R this is {−1, 1} and in R2

this is

{[
1
0

]
,

[
−0.5√

3/2

]
,

[
−0.5

−
√

3/2

]}
. The construction

of such examples is illustrated in Figure 1. In general,
since all these vectors are orthogonal to ed, and the
way they are constructed ensures that the top d − 1
singular values are all identically

√
d/(d− 1), the min-

imum singular value will be exactly σ` and by adver-
sarial perturbation of size σ`/

√
d on each data point

we reduce all points to a Rd−1 subspace and hence
they are no longer in general position.

4 SIMULATIONS

In this section we report simulation results of our pro-
posed algorithms on the example constructed by Nasi-
hatkon and Hartley in [15]. It was shown in [15] that
such an example will result in highly disconnected sim-
ilarity graphs, and thus poses a unique challenge for
spectral clustering to recover the true clustering of
data points. In particular, consider 4-dimensional sub-
spaces and for each subspace we generate data set A
consisting of 8m data points in R4 as follows:

A =

m−1⋃
k=0

⋃
s,s′∈{±1}

{(cos θk, sin θk, sδ, s
′δ),

(sδ, s′δ, cos θk, sin θk)}; θk = kπ/m, (4.1)

where m ∈ N ∗ and δ ∈ (0, 1) are parameters for gen-
erating the data set. Finally, the unnormalized obser-

Table 4: Relative Violation (Rel. Vio.) of SEP, clus-
tering accuracy without post-processing (Acc. 1) and
clustering accuracy with post-processing (Acc. 2) for
Lasso SSC on noiseless and noisy data.

Rel. Vio. Acc. 1 Acc. 2
Noiseless .03 .73 .99
Noisy .09 .77 .93

vation matrix X̃ is constructed as

X̃ = [W1A,W2A] ,

where W1,W2 ∈ Rn×4, n > 4 are different linear
operators that map a 4-dimensional vector to an n-
dimensional ambient space. Finally, the input matrix
X is obtained by normalizing X̃ so that each column
has unit `2 norm and then adding Gaussian white noise
with entry-wise variance σ2/n.

Before presenting the simulation results we first make
some remarks on the constructed dataset X. By con-
struction, X has two overlaping 4-dimensional sub-
spaces with probability 1, if both W1 and W2 are sam-
pled uniformly from all orthogonal linear mappings
from R4 to Rn. Furthermore, noiseless data points in
each cluster are in general position, provided that m is
a prime number., In [15] it was shown that SSC tends
to cluster data points in each cluster into two disjoint
clusters. Hence, the follow-up spectral clustering step
cannot correctly merge the four learnt clusters into two
without additional information.

In Figure 2 we plot the similarity graph learnt by Lasso
SSC as well as spectral clustering results on both noise-
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Figure 2: Clustering analysis on noiseless (top) and noisy (bottom) data. Left: similarity matrix produced by
Lasso SSC. Middle: spectral clustering on the similarity matrix, with 2 clusters. Right: spectral clustering on
the similarity matrix, with 4 clusters.

less and noisy data. The parameters for data gener-
ation are set as n = 5, m = 11, δ = 0.2, σ = 0.1
and Lasso SSC parameter is set as λ = 10−3. Figure
2 shows that the similarity graph is poorly connected
and hence if we try to directly cluster the data points
into two clusters (the middle column of the plots), the
spectral clustering algorithm fails completely. On the
other hand, it does a good job in clustering the data
points into 4 clusters. Subsequently, we could apply
our proposed post-processing step by first computing
the underlying low-dimensional subspace for each clus-
ter and then merge those subspaces that are close in
angular distance. As a result, near perfect clustering
could be achieved on this synthetic dataset, as shown
in Table 4. We also report the relative violation of SEP
property 3 in Table 4 to show that the SEP property
is very well satisfied and is hence not a contributing
factor for the poor performance of vanilla Lasso SSC.

5 CONCLUSION

In this paper we investigate graph connectivity in noisy
sparse subspace clustering. We propose a robust post-
process step of noisy SSC that produces consistent
clustering with high probability, assuming the mag-
nitude of noise is sufficiently small. Our work is the
first step toward noisy SSC with complete clustering
guarantees, under the most general fully deterministic

3The relative violation of SEP for a similarity graph C is
defined as

∑
(i,j)∈E |Cij |/

∑
(i,j)/∈E |C|ij , where (i, j) ∈ E

if and only if xi and xj belong to the same cluster.

data model. We next remark on several future direc-
tions along this line of research, which could further
improve the results presented in this paper.

Perhaps the most important limitation of Theorem 3.2
is the restricted eigenvalue assumption (Assumption
3.1). Since it concerns the smallest singular value of
the most ill-posed subset of d data points, we are re-
ally requiring the noise magnitude of ξ to be extremely
small. In fact, we believe σ` is exponentially small with
respect to the number of data points per subspace, as-
suming they are drawn uniformly from the unit low-
dimensional sphere. Although getting a better depen-
dency over σ` is impossible under the adversarial noise
model (as shown in Sec. 3.3), we conjecture that the
assumption could be relaxed when noise are stochastic
such as Gaussian white noise.

Another potential fruitful direction is to relax the re-
quirement that the support of sparse regression for ev-
ery data point consists of at least d other data points.
With less than (d + 1) data points in a connected
component we can no longer approximately estimate
the intrinsic low-dimensional subspace; however, we
might still be able to obtain some leading directions
of the underlying subspace, which could provide valu-
able information for the subspace merging step. In
fact, Soltanokoltabi et al. proved lower bounds on
support size in robust subspace clustering under the
semi-random model setting [20]. Though their bound
is not as tight as Ω(d), it may benifit from some ad-
ditional post-processing step that attempts to merge
over-clustered subspaces together.
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Appendix A PROOFS OF THEOREMS FOR NOISELESS SSC

We prove Theorem 3.1, the main theorem for the noiseless clustering consistent SSC algorithm given in Sec. 3.1

Proof of Theorem 3.1. Fix a connected component Gr = (Vr, Er) ⊆ G. By the self-expressiveness property we
know that all data points in Vr lie on the same underlying subspace S(`). It can be easily shown that if X(`) is in
general position then |Vr| ≥ d` + 1 because for any xi ∈ S(`), at least d` other data points in the same subspace
are required to perfectly reconstruct xi. Consequently, we have Ŝ(r) = S(`) because Vr contains at least d` data

points in S(`) that are linear independent. On the other hand, due to the self-expressiveness property, for every
` = 1, · · · , L there exists a connected component Gr such that Ŝ(r) = S(`) because otherwise nodes in X(`) will
have no edges attached, which contradicts Eq. (3.1) and the definition of G. As a result, the above argument
shows that Algorithm 1 achieves perfect subspace recovery; that is, there exists a permutation π on [L] such that
Ŝ(`) = S(π(`)) for all ` = 1, · · · , L.

We next prove that Algorithm 1 achieves perfect clustering as well, that is, π(ẑi) = zi for every i = 1, · · · , N .
Assume by way of contradiction that there exists i such that ẑi = ` and zi = `′ 6= π(`). Let Gr = (Vr, Er) ⊆ G
be the connected component in G that contains the node corresponding to xi. Since ẑi = `, by SEP and the
above analysis we have Ŝ(r) = Ŝ(`) = S(π(`)). On the other hand, because zi = `′ and data points in Vr are in

general position, we have Ŝ(r) = S(`′). Hence, S(π(`)) = S(`′) with `′ 6= π(`), which contradicts the assumption
that no two underlying subspaces are identical.

Appendix B DISCUSSION ON IDENTIFIABILITY AND `0 FORMULATION
OF NOISELESS SUBSPACE CLUSTERING

B.1 The identifiability of noiseless subspace clustering

If we use a more relaxed notion of identifiability, even the “general position” assumption could be dropped for
consistent clustering. In Theorem B.1 we define such a relaxed notion of identifiability for the union-of-subspace
structure.

Theorem B.1. Any set of N data points in Rn has a partition that follows a union-of-subspace structure, where
points in each subspaces are in general position. We call this partition the minimal union-of-subspace structure.

Proof. Given a finite set X ⊂ Rn. We will algorithmically construct a minimal partition. Initialize set Y = X .
Start with k = 1, do the following repeatedly until it fails, then increment k, until Y = ∅: find the maximum
number of points that lie in a hyperplane of dimension (k+1), assign a new partition for these points and remove
these points from Y. It is clear that in this way, every partition is a distinct subspace and points in any subspace
are in general position.

One consequence of Theorem B.1 is that if SEP holds with respect to any minimal union-of-subspace structure
(i.e., a minimal ground truth), then Algorithm 1 will recover the correct ground truth clustering. We remark that
SEP does not hold for any finite subset of points in Rn if `1 regularization is used, unless the data satisfy certain
separation conditions [19]. However, in Section B.2 we propose an `0 regularization problem which achieves SEP
(and hence consistent clustering) for any X ⊆ Rd.

We note that the minimal union-of-subspace structure may not be unique. An example is that if there is one point
in the intersection of two subspaces with equal dimension, then this point can be assigned to either subspaces.
Now, suppose the intersection has dimension k, there can be at most k points in the intersection, otherwise these
points will form a new k-dimension subspace and the original structure is no longer minimal.

B.2 The merit of `0-minimization and agnostic subspace clustering

A byproduct of our result is that it also addresses an interesting question of whether it is advantageous to use
`0 over `1 minimization in subspace clustering, namely

min
ci∈RN

‖ci‖0, s.t. xi = Xci, cii = 0. (B.1)
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If one poses this question to a compressive sensing researcher, the answer will most likely be yes, since `0
minimization is the original problem of interest and empirical evidence suggests that using iterative re-weighted
`1 scheme to approximate `0 solutions often improves the quality of signal recovery. On the other hand, a
statistician is most likely to answer just the opposite because `1 shrinkage would often significantly reduce
the variance at the cost of a small amount of bias. A formal treatment of the latter intuition suggests that
`1 regularized regression has strictly less “effective-degree-of-freedom” than the “`0 best-subset selection” [22],
therefore generalizes better.

How about subspace clustering? Unlike `1 solution that is unique almost everywhere, `0 solutions will not be
unique and it is easy to construct a largely disconnected graph based on optimal `0 solutions. Using the new
observation that we do not actually need graph connectivity, we are able to establish that `0 minimization for
SSC is indeed the ultimate answer for noiseless subspace clustering.

Theorem B.2. Given any N points in Rd, any solutions to the `0-variant of Algorithm 1 will partition the
points into a minimal union-of-subspace structure.

Proof. Define a minimal subspace with respect to point xi in a set {xi}Ni=1 to be the span of any points that
minimizes (B.1) for i. Since the ordering of how data points are used does not matter in Algorithm 1, we can
sort the points into an ascending order with respect to the dimensionality. Now the merging procedure of these
subspaces into a unique set of subspaces is exactly the same as the construction in the proof of Theorem B.1.
Therefore, all solutions of the `0 SSC are going to be the correct partition.

With slightly more effort, it can be shown that the converse is also true. Therefore, the set of solutions of
`0-SSC completely characterizes the set of minimal union-of-subspace structure for any set of points in Rd. In
contrast, `1-SSC requires additional separation condition to work. That said, it may well be the case in practice
that `1-SSC works better for the noisy subspace clustering in the low signal-to-noise ratio regime. It will be
an interesting direction to explore how iterative reweighted `1 minimizations and local optimization for `p-norm
(0 < p < 1) work in subspace clustering applications.

Appendix C PROOFS OF THEOREMS FOR NOISY SSC

The purpose of this section is to present a complete proof to Theorem 3.2, our main result concerning clustering
consistent Lasso SSC on noisy data. We first present and prove two technical propositions that will be used
later.

Proposition C.1. Let u be an arbitrary vector in S(`) with ‖u‖2 = 1. Then max1≤i≤N`,i6=i∗ |〈u,x
(`)
i 〉| ≥ ρ−i

∗

`

for every i∗ = 1, · · · , N`.

Proof. For notational simplicity let X
(`)
−i∗ = (x

(`)
1 , · · · ,x(`)

i∗−1,x
(`)
i∗+1, · · · ,x

(`)
N`

) and Q(`)
−i∗ = conv(±X

(`)
−i∗). The

objective of Proposition C.1 is to lower bound ‖X(`)>

−i∗ u‖∞ for any u ∈ S(`) with ‖u‖2 = 1. By definition of the

dual norm, ‖X(`)>

−i∗ u‖∞ is equal to the objective of the following optimization problem

max
c∈RN`−1

〈u,X(`)
−i∗c〉 s.t. ‖c‖1 = 1. (C.1)

To obtain a lower bound on the objective of Eq. (C.1), note that ρ−i
∗

` is the radius of the largest ball inscribed in

Q(`)
−i∗ and hence ρ−i

∗

` u ∈ Q(`)
−i∗ . Consequently, ρ−i

∗

` u can be written as a convex combination of (signed) columns

in X
(`)
−i∗ , that is, there exists c ∈ RN`−1 with ‖c‖1 = 1 such that X

(`)
−i∗c = ρ−i

∗

` u. Plugging the expression into
Eq. (C.1) we obtain

‖X(`)>

−i∗ u‖∞ ≥ 〈u, ρ
−i∗
` u〉 = ρ−i

∗

` .

Proposition C.2. Let A = (a1, · · · ,am) be an arbitrary matrix with at least m rows. Then ‖ai −
PRange(a−i)(ai)‖2 ≥ σm(A), where a−i denotes all columns in A except ai.
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Proof. Denote a⊥i as a⊥i = ai − PRange(a−i)(ai). By definition, a⊥i ∈ Range(A) and 〈a⊥i ,ai′〉 = 0 for all i′ 6= i.
Consequently,

σm(A) ≤ inf
u∈Range(A)

‖Au‖2
‖u‖2

≤ ‖Aa
⊥
i ‖2

‖a⊥i ‖2
=
〈ai,a⊥i 〉
‖a⊥i ‖2

=
‖a⊥i ‖22
‖a⊥i ‖2

= ‖a⊥i ‖2.

We next present two key lemmas. The first lemma, Lemma C.1, shows that the estimated subspace Ŝ from noisy
inputs is a good approximation the underlying subspace S(`) as long as the restricted eigenvalue assumption
holds and exactly d points from the same subspace are used to construct Ŝ.

Lemma C.1. Fix ` ∈ {1, · · · , L}. Suppose Ŝ is the range of a subset of points Yd ⊆ Y(`) containing exactly d

noisy data points belonging to the `th subspace. Let S(`) be the ground-truth subspace; i.e., x
(`)
1 , · · · ,x(`)

N`
∈ S(`).

Under Assumption 3.1 we have

d(Ŝ,S(`)) ≤ 2dξ2

σ2
`

. (C.2)

Proof. Suppose Yd = (y
(`)
i1
, · · · ,y(`)

id
) and Xd = (x

(`)
i1
, · · · ,x(`)

id
). By the noise model ‖Yd − Xd‖2F =∑d

j=1 ‖εij‖22 ≤ dξ2. On the other hand, by Assumption 3.1 we have σd(Xd) ≥ σ`. Wedin’s theorem (Lemma
D.1 in Appendix D) then yields the lemma.

In Lemma C.2 we show that if the restricted eigenvalue assumption holds and the regularization parameter λ
is in a certain range, the optimal solution to the Lasso problem in Eq. (3.2) has at least d nonzero coefficients,
which lead to |Vr| ≥ d+ 1 for every connected component Vr in the similarity graph constructed in Algorithm 2.
Lemma C.2 is a natural extension to the fact that at least d points should be used to reconstruct a certain data
point for noiseless inputs, if the data matrix X is in general position.

Lemma C.2. Assume Assumption 3.1 and the self-expressiveness property hold. For each i ∈ {1, · · · , N},
‖ci‖0 ≥ d if the regularization parameter λ satisfies

2ξ(1 + ξ)2(1 + 1/ρ`) < λ <
ρ`σ`

2
, ` = 1, · · · , L. (C.3)

Proof. Because the self-expressiveness property holds, we assume without loss of generality that the support

set of ci with ‖ci‖0 = t is {y(`)
1 , · · · ,y(`)

t }. Assume by way of contradiction that ‖ci‖0 < d and define y⊥ =

y
(`)
i −

∑d−1
j=1 ci,jy

(`)
j , where ci,1, · · · , ci,d−1 contain all nonzero coefficients 4 in ci. Since ci is optimal, the following

must hold for every y
(`)
i′ with i′ 6= i:

argminc∈R

{
‖y⊥ − cy(`)

i′ ‖
2
2 + 2λ|c|

}
= 0. (C.4)

To see the necessity of Eq. (C.4), note that the optimal solution to Eq. (C.4) c∗ 6= 0 implies

‖y(`)
i −Y

(`)
−i c̃i‖

2
2 + 2λ‖c̃i‖1 ≤ ‖y⊥− c∗y(`)

i′ ‖
2
2 + 2λ|c∗|+ 2λ‖ci‖1 < ‖y⊥‖22 + 2λ‖ci‖1 = ‖y(`)

i −Y
(`)
−ici‖

2
2 + 2λ‖ci‖1,

where c̃i = ci + c∗ · ei′ . This contradicts the optimality of ci with respect to Eq. (3.2).

By optimality conditions, Eq. (C.4) implies |〈y⊥,y(`)
i′ 〉| ≤ λ. In the remainder of the proof we will show that

under the assumptions made in Lemma C.2, |〈y⊥,y(`)
i′ 〉| > λ, which results in a contradiction.

In order to lower bound |〈y⊥,y(`)
i′ 〉| we first bound the noiseless version of the inner product |〈x⊥,x(`)

i′ 〉|, where

x⊥ = x
(`)
i −

∑d−1
j=1 ci,jx

(`)
j . A key observation is that x⊥ ∈ S(`) and hence by Proposition C.1 and C.2 the

following chain of inequality holds for any x
(`)
i′ with i′ 6= i:∣∣〈x⊥,x(`)

i′ 〉
∣∣ ≥ ρ`‖x⊥‖2 ≥ ρ` ∥∥∥x(`)

i − Pspan(x
(`)
1:d−1)

(x
(`)
i )
∥∥∥
2
≥ ρ`σ`. (C.5)

4Some coefficients in ci1 , · · · , ci,d−1 might be zero because ‖ci‖1 could be smaller than d− 1.
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Our next objective is to upper bound the inner product perturbation |〈y⊥,y(`)
i′ 〉 − 〈x⊥,x

(`)
i′ 〉| and subsequently

obtain a lower bound on |〈y⊥,y(`)
i′ 〉|. Note that

〈y⊥,y(`)
i′ 〉 = 〈x⊥,x(`)

i′ 〉+ 〈y⊥ − x⊥,x(`)
i′ 〉+ 〈x⊥,y(`)

i′ − x
(`)
i′ 〉+ 〈y⊥ − x⊥,y(`)

i′ − x
(`)
i′ 〉;

therefore, ∣∣〈y⊥,y(`)
i′ 〉 − 〈x

⊥,x
(`)
i′ 〉
∣∣ ≤ ‖y⊥ − x⊥‖‖x(`)

i′ ‖+ ‖y⊥‖‖y(`)
i′ − x

(`)
i′ ‖ ≤ ‖y

⊥ − x⊥‖2 + ξ‖y⊥‖2. (C.6)

In order to upper bound ‖y⊥‖2 and ‖y⊥ − x⊥‖2, note that by definition ‖y⊥‖2 = ‖y(`)
1 −

∑d
j=2 cijy

(`)
j ‖2 ≤

(1 + ‖ci‖1)(1 + ξ) and ‖y⊥−x⊥‖2 = ‖ε(`)1 −
∑d
j=2 cijy

(`)
j ‖2 ≤ ξ(1 + ‖ci‖1). Hence we only need to upper bound

‖ci‖1, which can be done by the following argument due to the optimality of ci: By arguments on page 21 in
[24], the following upper bound on ‖ci‖1 is proven:

‖ci‖1 ≤
1

ρ`
+
ξ2

λ

(
1 +

1

ρ`

)2

. (C.7)

The lower bound on λ in Eq. (C.3) implies that ξ < λ(1 + 1/ρ`). Plugging this upper bound into Eq. (C.7) we
obtain

‖ci‖1 ≤ 1/ρ` + ξ(1 + 1/ρ`) ≤ (1 + ξ)(1 + 1/ρ`), (C.8)

which eliminates the dependency on λ. We now substitute the simplified upper bound on ‖ci‖1 into the upper
bound for ‖y⊥‖2, ‖y⊥ − x⊥‖2 and get

‖y⊥‖2 ≤ (1 + ξ)2(1 + 1/ρ`); ‖y⊥ − x⊥‖2 ≤ ξ(1 + ξ)(1 + 1/ρ`). (C.9)

Combining Eq. (C.5), (C.6) and (C.9) we obtain the following lower bound on |〈y⊥,y(`)
i′ 〉|:∣∣〈y⊥,y(`)

i′ 〉
∣∣ ≥ ρ`σ` − 2ξ(1 + ξ)2(1 + 1/ρ`) ≥

1

2
ρ`σ`, (C.10)

where the last inequality is due to the assumption that 2ξ(1+ξ)2(1+1/ρ`) <
1
2ρ`σ` implied by Eq. (C.3). Finally,

since 1
2ρ`σ` > λ as assumed in Eq. (C.3), we have |〈y⊥,y(`)

i′ 〉| > λ, which results in the desired contradiction.

Finally, Theorem 3.2 is a simple consequence of Lemma C.1 and C.2 because under the conditions of Lemma
C.2, every component Vr will have at least d data points. Define µε =

√
2dξ2/min` σ2

` . Lemma C.1 implies that

d(Ŝ(r), Ŝ(r′)) ≤ µε if Vr and Vr′ belong to the same cluster. On the other hand, by the separation condition in

Eq. (3.6) and Lemma C.1, if Vr and Vr′ belong to different clusters we would have d(Ŝ(r), Ŝ(r′)) > µε. Therefore,
the single-linkage clustering procedure in Algorithm 2 will eventually merge estimated subspaces correectly.

Appendix D MATRIX PERTURBATION THEOREMS

Lemma D.1 (Wedin’s theorem; Theorem 4.1, pp. 260 in [21]). Let A,E ∈ Rm×n be given matrices with m ≥ n.
Let A have the following singular value decomposition U>1

U>2
U>3

A
[

V1 V2

]
=

 Σ1 0
0 Σ2

0 0

 ,
where U1,U2,U3,V1,V2 have orthonormal columns and Σ1 and Σ2 are diagonal matrices. Let Ã = A + E be
a perturbed version of A and (Ũ1, Ũ2, Ũ3, Ṽ1, Ṽ2, Σ̃1, Σ̃2) be analogous singular value decomposition of Ã. Let

Φ be the matrix of canonical angles between Range(U1) and Range(Ũ1) and Θ be the matrix of canonical angles

between Range(V1) and Range(Ṽ1). If there exists δ > 0 such that

min
i,j

∣∣[Σ1]i,i − [Σ2]j,j
∣∣ > δ and min

i

∣∣[Σ1]i,i
∣∣ > δ,

then

‖ sin Φ‖2F + ‖ sin Θ‖2F ≤
2‖E‖2F
δ2

.


