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Abstract
We consider the problem of linear regression un-
der measurement constraints and derive compu-
tationally feasible subsampling strategies to sam-
ple a small portion of design (data) points in a lin-
ear regression model y = Xβ + ε. The derived
subsampling algorithms are minimax optimal for
estimating the regression coefficients β under
the fixed design setting, up to a small (1 + ε)
relative factor. Experiments on real-world data
confirmed the effectiveness of our subsampling
based linear regression algorithm with compar-
ison to several other popular competitors. A
longer technical report for this work can be found
in (Wang & Singh, 2016).

1. Introduction
We consider the linear regression model

y = Xβ + ε, (1)

where X ∈ Rn×p is a fixed design matrix or data matrix,
y ∈ Rn is the response, ε ∼ Nn(0, σ2In) are i.i.d. white
Gaussian noise with variance σ2 and β is a fixed but un-
known p-dimensional coefficient vector. We are interested
in the setting when no distributional assumptions are made
on the data X. If there are more samples than variables
(n > p) i.e. the “low-dimensional” setting and X has full
column rank, ordinary least squares (OLS) estimator

β̂
ols

= (X>X)−1X>y (2)

is known to be optimal for estimating both β and Xβ.

Despite the optimality of OLS, in practice it may not be
feasible to obtain the full n-dimensional response vector y
due to sampling or measurement constraints. For example,
in some geographical or genetic applications the number of
data points n might be equal to the entire population of a
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region or all genes on human chromosomes. Acquiring re-
sponse variables (labels) for all data points can then be very
expensive or even infeasible. It is then an important ques-
tion to subsample a small set of “representative” data points
to regress on so that the resulting estimation or prediction
is as accurate as possible.

In this paper, we present a systematic approach for data
subsampling in low-dimensional linear regression models.
This problem is known as experimental design in the statis-
tics literature (Pukelsheim, 1993), and leads to a combina-
torial optimization problem. Our main idea is to consider
a convex relaxation of this otherwise computationally in-
tractable problem and perform sampling with respect to the
optimal solution of the relaxed convex problem. Our main
results are polynomial-time near-optimal minimax subsam-
pling strategies for linear regression with finite-sample
guarantees, which greatly generalizes prior attempts at
deriving statistically optimal subsampling strategies (Zhu
et al., 2015; Chen et al., 2015; Ma et al., 2015).

2. A minimax framework
We consider the following subsampling model:

Definition 2.1 (Subsampling model). Let X be a fixed n×p
design matrix with full column rank and k be the subsam-
pling budget, with p ≤ k ≤ n. An algorithm A first ob-
serves X in full and produces, either deterministically or
randomly, a matrix X̃ ∈ Rk×p such that each row of X̃ is
equal to a particular row in X (duplicates allowed). A then
observes ỹ = X̃β+ ε with ε ∼ Nk(0, σ2Ik) and attempts
to estimate the underlying model β. We useA(k) to denote
the set of all such subsampling algorithms.

The main goal of this paper is to characterize the minimax
performance of subsampled linear regression defined as

inf
A∈A(k)

sup
β∈Rp

E
[
‖β̂ − β‖22

]
, (3)

where the expectation is taken over the noise variables ε
and also the inherent randomness in the algorithm A.
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Figure 1. ‖β̂ − β‖22 against number of subsamples k under different spectral decay regimes of X.

3. Near-optimal subsampling
We present computationally efficient algorithms for esti-
mating regression coefficients β in the subsampled linear
regression framework.

Combinatorial A-optimality Because the variance of
β̂
ols

regressed upon subset (XS ,yS) (where XS ,yS
indicate rows of X,y corresponding to indices in S)
is σ2tr((X>SXS)−1), a natural formulation is the “A-
optimality” criterion:

A-optimality: min
|S|≤k

tr
(
(X>SXS)−1

)
. (4)

Unfortunately, Eq. (4) is a combinatorial optimization and
is in general computationally intractable. Approximation
methods exist (Avron & Boutsidis, 2013) but their analysis
do not reveal improved or near minimax statistical rates.

A convex relaxation A convex relaxation of Eq. (4) is

min
π1,··· ,πn

tr
(
(X>diag(π)X)−1)

)
(5)

s.t.

n∑
i=1

πi ≤ 1; π1, · · · , πn ≥ 0.

Note that we have substituted 1 for k in the “signal level”∑n
i=1 πi for normalization purposes.

The subsampling algorithm Let π∗ be the optimal so-
lution and fopt be the optimal value of the objective
in Eq. (5), which can be computed in polynomial time
via SDP or any conventional convex optimization tech-
niques. The algorithm then obtains k i.i.d. sampled rows
of X, where row xi is sampled with probability π∗i . This
step is repeated Θ(log n) times and XS with the small-
est tr((X>SXS)−1) is used for subsampled regression.
The following theorem shows that such algorithm achieves
near-optimal rates for estimating regression coefficients.

Theorem 3.1. Fix X ∈ Rn×p with full column rank
and error tolerance parameter ε ∈ (0, 1/2). Suppose
sup1≤i≤n ‖xi‖2 ≤ B < ∞. Let Σ∗ =

∑n
i=1 π

∗
i xix

>
i .

If k = Ω(ε−2B2‖(Σ∗)−1‖2 log(n/ε)) then

σ2

k
fopt ≤ inf

A∈A(k)
sup
β

E
[
‖β̂ − β‖22

]
≤ (1 + ε)σ2

k
fopt.

In addition, the algorithm described before achieves the
upper bound above with poly(n, log(1/ε)) running time.

In (Wang & Singh, 2016), we also give interpretable sub-
sampling probabilities for the random design setting and
demonstrate explicit gaps in statistical rates between op-
timal and baseline (e.g., uniform) subsampling methods.
The general idea is to subsample data points to form a
better-conditioned design set XS in order to reduce error
of the resulting subsampled OLS regression estimator.

4. Simulation results
We compare our methods on synthetic datasets with exist-
ing subsampling strategies in prior literature, which include
uniform sampling (πi = 1/n), leverage score sampling
(πi ∝ x>i Σ−1X xi, (Ma et al., 2015)), double leverage score
sampling (πi ∝ ‖Σ−1X xi‖22), PL sampling (πi ∝ ‖xi‖2,
(Zhu et al., 2015)). Though not a subsampling method, we
also compare our algorithm with the popular D-optimality
criterion 1 which finds a subset S of size k that maxi-
mizes det(X>SXS). For synthetic datasets, we use n =
10000 data points with p = 10 variables and generate
β ∼ Np(0, I) and each row of X i.i.d. from N (0,ΣX),
where ΣX = UΛU> for some random orthonormal basis
U and Λ = diag(λ1, · · · , λp). We set σ2 = 0.01 through-
out the synthetic experiments. We adopt the sampling with
replacement setting, where fresh noise are imposed on the
same data point xi if it is sampled more than once.

Figure 1 depicts the average estimation error against num-
ber of subsamples k (ranging from 0.01n to 0.1n) under
different spectral decay regimes of X. We observe that
the near-optimal sampling strategy (depicted in black lines)
outperforms the other subsampling methods, including the

1Implemented using Matlab’s candexch routine.
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approximate D-optimality designs. The performance gap
(with respect to D-optimality, for example) is even larger
when the design matrix X is closer to singular (e.g., expo-
nential spectral decay λk ∝ e−k), which is consistent with
out theoretical findings.
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