ICASSP 2018, Calgary, Canada

Linear Quantization by Effective Resistance Sampling

Yining Wang
Carnegie Mellon University

Joint work with Aarti Singh

- * The linear model: $y = X\beta_0$
 - * X: n by p "design" matrix, with full knowledge
 - * *y*: *n*-dim vector, the sensing result
 - * β_0 : p-dim unknown signal to be recovered

- * The linear model: $y = X\beta_0$
- * The quantized sensing problem:
 - * Measurements of *y* cannot be made in arbitrary precision
 - * A total of k bits allocated to each measurement y_i
 - * Each y_i rounded to the nearest integer with k_i binary bits.

$$\widetilde{y}_i = 2^{-(k_i - 1)} \cdot \text{round} \left[2^{k_i - 1} \frac{y_i}{M} \right]$$

- * The linear model: $y = X\beta_0$
- * The quantized sensing problem:
 - * Measurements of *y* cannot be made in arbitrary precision
 - * A total of k bits allocated to each measurement y_i
 - * Each y_i rounded to the nearest integer with k_i binary bits.

$$\widetilde{y}_i = 2^{-(k_i - 1)} \cdot \text{round} \left[2^{k_i - 1} \frac{y_i}{M} \right]$$
Range of y

- * The linear model: $y = X\beta_0$
- * The quantized sensing problem:
 - * Measurements of *y* cannot be made in arbitrary precision
- * Example applications:
 - * Brain activity measurements: total signal strength limited
 - * Distributed sensing: signal communication limited

- * The linear model: $y = X\beta_0$
- * The quantized sensing problem:

$$\widetilde{y}_i = 2^{-(k_i - 1)} \cdot \text{round} \left[2^{k_i - 1} \frac{y_i}{M} \right]$$

* Question: how to allocate measurement bits to achieve the best statistical efficiency?

DITHERING

- * "Dithering": $\widetilde{y}_i = 2^{-(k_i 1)} \cdot \text{round} \left[2^{k_i 1} \left(\frac{y_i}{M} + \delta_i \right) \right]$
 - * Introducing artificial noise for independent statistical error
 - * Equivalent model: $\widetilde{y}_i = \langle x_i, \beta_0 \rangle + \varepsilon_i$

$$\mathbb{E}[\varepsilon_i] = 0 \qquad \qquad \mathbb{E}[\varepsilon_i^2] \le 4^{-(k_i+1)} M^2$$

DITHERING

uniform noise between two values

- * "Dithering": $\widetilde{y}_i = 2^{-(k_i 1)} \cdot \text{round} \left[2^{k_i 1} \left(\frac{y_i}{M} + \delta_i \right) \right]$
 - * Introducing artificial noise for independent statistical error
 - * Equivalent model: $\widetilde{y}_i = \langle x_i, \beta_0 \rangle + \varepsilon_i$

$$\mathbb{E}[\varepsilon_i] = 0 \qquad \qquad \mathbb{E}[\varepsilon_i^2] \le 4^{-(k_i + 1)} M^2$$

* "Dithering":
$$\widetilde{y}_i = 2^{-(k_i - 1)} \cdot \text{round} \left[2^{k_i - 1} \left(\frac{y_i}{M} + \delta_i \right) \right]$$
$$= \langle x_i, \beta_0 \rangle + \varepsilon_i \qquad \mathbb{E}[\varepsilon_i^2] \le 4^{-(k_i + 1)} M^2$$

Weighted Ordinary Least Squares (OLS)

$$\widehat{\beta}_{k} = (X^{\top}WX)^{-1}X^{\top}W\widetilde{y}$$

* "Dithering":
$$\widetilde{y}_i = 2^{-(k_i - 1)} \cdot \text{round} \left[2^{k_i - 1} \left(\frac{y_i}{M} + \delta_i \right) \right]$$
$$= \langle x_i, \beta_0 \rangle + \varepsilon_i \qquad \mathbb{E}[\varepsilon_i^2] \le 4^{-(k_i + 1)} M^2$$

Weighted Ordinary Least Squares (OLS)

$$\widehat{\beta}_{\mathbf{k}} = (X^{\top}WX)^{-1}X^{\top}W\widetilde{y}$$

$$W = \operatorname{diag}(w_1, w_2, \cdots, w_n)$$

$$= \operatorname{diag}(4^{k_1+1}, 4^{k_2+1}, \cdots, 4^{k_n+1})$$

* Weighted Ordinary Least Squares (OLS)

$$\widehat{\beta}_{\mathbf{k}} = (X^{\top}WX)^{-1}X^{\top}W\widetilde{y}$$

$$\mathbb{E}\|\widehat{\beta}_{\mathbf{k}} - \beta_0\|_2^2 \le M^2 \cdot \operatorname{tr}\left[\sum_{i=1}^n 4^{k_i+1}x_ix_i^{\top}\right]^{-1}$$

* Optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N}$$

Weighted Ordinary Least Squares (OLS)

$$\widehat{\beta}_{\mathbf{k}} = (X^{\top}WX)^{-1}X^{\top}W\widetilde{y} \qquad X^{\top}WX$$

$$\mathbb{E}\|\widehat{\beta}_{\mathbf{k}} - \beta_0\|_2^2 \le M^2 \cdot \operatorname{tr}\left[\sum_{i=1}^n 4^{k_i+1}x_ix_i^{\top}\right]^{-1}$$

* Optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N}$$

* Weighted Ordinary Least Squares (OLS)

$$\widehat{\beta}_{\mathbf{k}} = (X^{\top}WX)^{-1}X^{\top}W\widetilde{y} \qquad X^{\top}WX$$

$$\mathbb{E}\|\widehat{\beta}_{\mathbf{k}} - \beta_0\|_2^2 \le M^2 \cdot \operatorname{tr}\left[\sum_{i=1}^n 4^{k_i+1}x_ix_i^{\top}\right]^{-1}$$

* Optimal quantization:

Combinatorial... hard!

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N}$$

Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N}$$

- * Still a challenging problem...
 - * Non-convexity of objectives!

Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N}$$

$$s.t. k_1 + \cdots + k_n \leq k,$$

- * Still a challenging problem...
 - * Non-convexity of objectives!

* Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top}WX]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$

* A re-formulation:

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} 4^{k_i + 1} x_i x_i^{\top} \right]^{-1} \quad s.t. \quad \sum_{i=1}^{n} k_i \le k$$

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} \quad s.t. \quad \sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$

* Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$

$$s.t. k_1 + \dots + k_n \le k,$$

$$k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$

* A re-formulation:

$$\min \operatorname{tr} \left[\sum_{i=1}^n 4^{k_i+1} x_i x_i^\top \right]^{-1} \qquad s.t. \quad \sum_{i=1}^n k_i \le k$$
 ex objective

$$s.t. \sum_{i=1}^{n} k_i \le k$$

Convex objective

min
$$\operatorname{tr}\left[\sum_{i=1}^n w_i x_i x_i^{\top}\right]^{-1}$$
 $s.t.$ $\sum_{i=1}^n \log_4(w_i) - 1 \le k$

$$s.t. \sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$

* Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{R}^+$$

$$s.t. k_1 + \dots + k_n \le k,$$

$$k_i \in \mathbb{N}$$
 $k_i \in \mathbb{R}^+$

* A re-formulation:

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} 4^{k_i + 1} x_i x_i^\top \right]^{-1} \quad s.t. \quad \sum_{i=1}^{n} k_i \leq k$$
 ex objective
$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^\top \right]^{-1} \quad s.t. \quad \sum_{i=1}^{n} \log_4(w_i) - 1 \leq k$$

$$s.t. \sum_{i=1}^{n} k_i \le k$$

Convex objective

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1}$$

s.t.
$$\sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$

* Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$

* A re-formulation:

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} \quad s.t. \quad \sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} + \lambda \left[\sum_{i=1}^{n} \log_4(w_i) - (n-k) \right]$$

* Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \qquad s.t.$$

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top}WX]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$

* A re-formulation:

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]$$

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} \qquad s.t. \quad \sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$

convex objective

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} + \lambda \left[\sum_{i=1}^{n} \log_4(w_i) - (n-k) \right]$$

* Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1}$$

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$

$$k_i \in \mathbb{R}^+$$

* A re-formulation:

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]$$

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} \qquad s.t. \quad \sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$

convex objective

concave objective

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} + \lambda \left[\sum_{i=1}^{n} \log_4(w_i) - (n-k) \right]$$

* Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$

- * A re-formulation:
 - * DC (Difference of Convex functions) programming:

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} - \lambda \left[-\sum_{i=1}^{n} \log_4(w_i) + (n-k) \right]$$

* Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{R}^+$$

- * How to obtain integral solutions? "Sparsify" k
 - * Idea 1: round to the nearest integer
 - * Problem: might cause objective to increase significantly

* Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{R}^+$$

- * How to obtain integral solutions? "Sparsify" k
 - * Idea 2: **simple** sampling
 - * Sample i from the distribution normalized by **k**
 - * k(i) = k(i) + 1
 - * Problem: slow convergence (require large budget *k*)

Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{R}^+$$

- * How to obtain integral solutions? "Sparsify" k
 - * Idea 3: **effective resistance** sampling

$$t \sim p_t \propto 4^{k_t + 1} \ell_t$$

* Advantage: fast convergence (*k* independent of condition numbers of *X* or *W*.

* Continuously relaxed optimal quantization:

$$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$

- * How to obtain integral solutions? "Sparsify" k
 - * Idea 3: **effective resistance** sampling

$$t \sim p_t \propto 4^{k_t+1} \ell_t \quad \begin{array}{l} \text{Effective resistance:} \\ \ell_t = x_t^\top [W^*]^{-1} x_t \end{array}$$

* Advantage: fast convergence (*k* independent of condition numbers of *X* or *W*.

OPEN QUESTIONS

* Most important question: how to solve (continuous)

$$\min \operatorname{tr} \left[\sum_{i=1}^{n} 4^{k_i + 1} x_i x_i^{\top} \right]^{-1} \qquad s.t. \quad \sum_{i=1}^{n} k_i \le k$$

- * Some ideas:
 - * Is the objective quasi-convex or directional convex?
 - * Are local minima also global, or approximately global?
 - Escaping saddle point methods?
 - * Are there adequate **convex** relaxations?

Thank you! Questions