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(JUANTIZED LINFAR SENSING

# The linear model: y = X,

* X:n by p “design” matrix, with full knowledge
* y: n-dim vector, the sensing result

* Bo: p-dim unknown signal to be recovered



(JUANTIZED LINFAR SENSING

* The linear model: y = X 3,

* The quantized sensing problem:
* Measurements ot y cannot be made in arbitrary precision
* A total of k bits allocated to each measurement y;

* Each y; rounded to the nearest integer with k; binary bits.

7 = 2~ (ki—1) &l |:2k7:_1 ﬂ]
Y roun Vi
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(JUANTIZED LINFAR SENSING

* The linear model: y = X 3,

* The quantized sensing problem:

* Measurements ot y cannot be made in arbitrary precision
“ Example applications:

* Brain activity measurements: total signal strength limited

* Distributed sensing: signal communication limited



(JUANTIZED LINFAR SENSING

# The linear model: y = X S
* The quantized sensing problem:

e L V1) q [2/«7;—1 ﬂ}
U roun Vi

+ Question: how to allocate measurement bits to achieve
the best statistical efficiency?



DITHERING

2 ”Dithering”: = 2~ (ki=1) . round {21“_1 (5{2 | 5@)}
* Introducing artificial noise for independent statistical error

* Equivalent model: Yi = (T, Bo) + €

Ble;] = 0 lef] < 4~ it 2



DITHERING

uniform notse between two values

+ “Dithering”: y; = 27~ - round {zki_l (]?@ I 57’”

* Introducing artificial noise for independent statistical error

* Equivalent model: Yi = (T, Bo) + €

Ble;] = 0 lef] < 4~ it 2




WEIGHTED OLS

a2 R £ — 2_(ki_1) . d {21?7;—1 (yz | (SZ)}
Dithering”: R s

= <$i7 BO> o & 4:[522] < 4_(ki—|-1)M2

* Weighted Ordinary Least Squares (OLS)
B = (X TWX) ' XTWyg
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* Weighted Ordinary Least Squares (OLS)
Bl = (XTWX) X '"wy

b W = diag(wi, wa, -+, wy)

= diag(4k1+1’ 4/€2+1, o 74kn+1)



WEIGHTED OLS

« Weighted Ordinary Least Squares (OLS)
B = (X TWX)~ 1XTVVy

2|8 — Boll2 < M2 -t 24’““

1 —1

“ Optimal quantization:

mlgntr[XTWX]_l st. ki+---+k, <k, k; €N
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WEIGHTED OLS

« Weighted Ordinary Least Squares (OLS)
Br = (X TWX)~ 1XTWy X'WX

| B — Pollz < MZ -t 24‘%“

“ Optimal quantization:
Combinatorial... hard!

mlgntr[XTWX]_l st. ki+---+k, <k, keN



CONTINUOUS RELAXATION

# Continuously relaxed optimal quantization:

mkintr[XTWX]_l st. ki+---+k, <k, k€N

« Still a challenging problem...

* Non-convexity of objectives!
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CONTINUOUS RELAXATION

“ Continuously relaxed optimal quantization:

mintr[XTWX]_l st. ki+---+k, <k, kjeN

€ k; € RT
+ A re-formulation:
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CONTINUOUS RELAXATION

“ Continuously relaxed optimal quantization:

mintr[XTWX]_l st. ki+---+k, <k, kjeN

g k; € RT
+ A re-formulation:
Fo) 11 )
min tr Z4ki+1xixj s.t. Z ki <k
i=1 I i=1
Convex objective i
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CONTINUOUS RELAXATION

# Continuously relaxed optimal quantization:

min tr[ X ' W X!

k

+ A re-formulation:

min tr
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CONTINUOUS RELAXATION
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CONTINUOUS RELAXATION
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CONTINUOUS RELAXATION

# Continuously relaxed optimal quantization:

mintr[XTWX]_l st. ki+---+k, <k, kjeN
£ k; € RT
+ A re- formulatlon

min tr szzz; T, Rl Zlog4 w; ) < k

Convex objective i conecave ob] )] ective
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CONTINUOUS RELAXATION

“ Continuously relaxed optimal quantization:

mintr[XTWX]_l st. ki+---+k, <k, kjeN
£ k; € RT
+ A re-formulation:

« DC (Difference of Convex functions) programming:

— Il

min tr Z Wi LT, — A |— Z log, (w;) + (n — k)
L i=1 =1




ROUNDING / SPARSIFICATION

“ Continuously relaxed optimal quantization:

mintr[XTWX]_l st. ki+---+k, <k, kjeN
£ k; € RT
* How to obtain integral solutions? “Sparsity” k

* Idea 1: round to the nearest integer

* Problem: might cause objective to increase significantly



ROUNDING / SPARSIFICATION

“ Continuously relaxed optimal quantization:

mintr[XTWX]_l st. ki+---+k, <k, kjeN
£ k; € RT
* How to obtain integral solutions? “Sparsity” k

* Idea 2: simple sampling
«  Sample 1 from the distribution normalized by k
¢ k(1) =Kk1) +1

* Problem: slow convergence (require large budget k)



ROUNDING / SPARSIFICATION

“ Continuously relaxed optimal quantization:

mintr[XTWX]_l st. ki+---+k, <k, kjeN
£ k; € RT
* How to obtain integral solutions? “Sparsity” k

* Idea 3: effective resistance sampling

t ~ Dy X 4kt+1€t

* Advantage: fast convergence (k independent of condition
numbers of X or W.
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“ Continuously relaxed optimal quantization:

mintr[XTWX]_l st. ki+---+k, <k, kjeN
£ k; € RT
* How to obtain integral solutions? “Sparsity” k

* Idea 3: effective resistance sampling

tLve resistance:
t Dy X 4 gt gt o x;l‘ [W*]_lajt

* Advantage: fast convergence (k independent of condition
numbers of X or W.



OPEN QUESTIONS

* Most important question: how to solve (continuous)
N —1

n ] n
min tr 24]‘““%—33; s.t. Zk" <k
Li=Tl i=1

+ Some ideas:

« Is the objective quasi-convex or directional convex?

* Are local minima also global, or approximately global?

Escaping saddle point methods?

* Are there adequate convex relaxations?



Thank you!
Questions



