ICASSP 2018, Calgary, Canada #### Linear Quantization by Effective Resistance Sampling Yining Wang Carnegie Mellon University Joint work with Aarti Singh - * The linear model: $y = X\beta_0$ - * X: n by p "design" matrix, with full knowledge - * *y*: *n*-dim vector, the sensing result - * β_0 : p-dim unknown signal to be recovered - * The linear model: $y = X\beta_0$ - * The quantized sensing problem: - * Measurements of *y* cannot be made in arbitrary precision - * A total of k bits allocated to each measurement y_i - * Each y_i rounded to the nearest integer with k_i binary bits. $$\widetilde{y}_i = 2^{-(k_i - 1)} \cdot \text{round} \left[2^{k_i - 1} \frac{y_i}{M} \right]$$ - * The linear model: $y = X\beta_0$ - * The quantized sensing problem: - * Measurements of *y* cannot be made in arbitrary precision - * A total of k bits allocated to each measurement y_i - * Each y_i rounded to the nearest integer with k_i binary bits. $$\widetilde{y}_i = 2^{-(k_i - 1)} \cdot \text{round} \left[2^{k_i - 1} \frac{y_i}{M} \right]$$ Range of y - * The linear model: $y = X\beta_0$ - * The quantized sensing problem: - * Measurements of *y* cannot be made in arbitrary precision - * Example applications: - * Brain activity measurements: total signal strength limited - * Distributed sensing: signal communication limited - * The linear model: $y = X\beta_0$ - * The quantized sensing problem: $$\widetilde{y}_i = 2^{-(k_i - 1)} \cdot \text{round} \left[2^{k_i - 1} \frac{y_i}{M} \right]$$ * Question: how to allocate measurement bits to achieve the best statistical efficiency? #### DITHERING - * "Dithering": $\widetilde{y}_i = 2^{-(k_i 1)} \cdot \text{round} \left[2^{k_i 1} \left(\frac{y_i}{M} + \delta_i \right) \right]$ - * Introducing artificial noise for independent statistical error - * Equivalent model: $\widetilde{y}_i = \langle x_i, \beta_0 \rangle + \varepsilon_i$ $$\mathbb{E}[\varepsilon_i] = 0 \qquad \qquad \mathbb{E}[\varepsilon_i^2] \le 4^{-(k_i+1)} M^2$$ #### DITHERING uniform noise between two values - * "Dithering": $\widetilde{y}_i = 2^{-(k_i 1)} \cdot \text{round} \left[2^{k_i 1} \left(\frac{y_i}{M} + \delta_i \right) \right]$ - * Introducing artificial noise for independent statistical error - * Equivalent model: $\widetilde{y}_i = \langle x_i, \beta_0 \rangle + \varepsilon_i$ $$\mathbb{E}[\varepsilon_i] = 0 \qquad \qquad \mathbb{E}[\varepsilon_i^2] \le 4^{-(k_i + 1)} M^2$$ * "Dithering": $$\widetilde{y}_i = 2^{-(k_i - 1)} \cdot \text{round} \left[2^{k_i - 1} \left(\frac{y_i}{M} + \delta_i \right) \right]$$ $$= \langle x_i, \beta_0 \rangle + \varepsilon_i \qquad \mathbb{E}[\varepsilon_i^2] \le 4^{-(k_i + 1)} M^2$$ Weighted Ordinary Least Squares (OLS) $$\widehat{\beta}_{k} = (X^{\top}WX)^{-1}X^{\top}W\widetilde{y}$$ * "Dithering": $$\widetilde{y}_i = 2^{-(k_i - 1)} \cdot \text{round} \left[2^{k_i - 1} \left(\frac{y_i}{M} + \delta_i \right) \right]$$ $$= \langle x_i, \beta_0 \rangle + \varepsilon_i \qquad \mathbb{E}[\varepsilon_i^2] \le 4^{-(k_i + 1)} M^2$$ Weighted Ordinary Least Squares (OLS) $$\widehat{\beta}_{\mathbf{k}} = (X^{\top}WX)^{-1}X^{\top}W\widetilde{y}$$ $$W = \operatorname{diag}(w_1, w_2, \cdots, w_n)$$ $$= \operatorname{diag}(4^{k_1+1}, 4^{k_2+1}, \cdots, 4^{k_n+1})$$ * Weighted Ordinary Least Squares (OLS) $$\widehat{\beta}_{\mathbf{k}} = (X^{\top}WX)^{-1}X^{\top}W\widetilde{y}$$ $$\mathbb{E}\|\widehat{\beta}_{\mathbf{k}} - \beta_0\|_2^2 \le M^2 \cdot \operatorname{tr}\left[\sum_{i=1}^n 4^{k_i+1}x_ix_i^{\top}\right]^{-1}$$ * Optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N}$$ Weighted Ordinary Least Squares (OLS) $$\widehat{\beta}_{\mathbf{k}} = (X^{\top}WX)^{-1}X^{\top}W\widetilde{y} \qquad X^{\top}WX$$ $$\mathbb{E}\|\widehat{\beta}_{\mathbf{k}} - \beta_0\|_2^2 \le M^2 \cdot \operatorname{tr}\left[\sum_{i=1}^n 4^{k_i+1}x_ix_i^{\top}\right]^{-1}$$ * Optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N}$$ * Weighted Ordinary Least Squares (OLS) $$\widehat{\beta}_{\mathbf{k}} = (X^{\top}WX)^{-1}X^{\top}W\widetilde{y} \qquad X^{\top}WX$$ $$\mathbb{E}\|\widehat{\beta}_{\mathbf{k}} - \beta_0\|_2^2 \le M^2 \cdot \operatorname{tr}\left[\sum_{i=1}^n 4^{k_i+1}x_ix_i^{\top}\right]^{-1}$$ * Optimal quantization: Combinatorial... hard! $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N}$$ Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N}$$ - * Still a challenging problem... - * Non-convexity of objectives! Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N}$$ $$s.t. k_1 + \cdots + k_n \leq k,$$ - * Still a challenging problem... - * Non-convexity of objectives! * Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top}WX]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$ * A re-formulation: $$\min \operatorname{tr} \left[\sum_{i=1}^{n} 4^{k_i + 1} x_i x_i^{\top} \right]^{-1} \quad s.t. \quad \sum_{i=1}^{n} k_i \le k$$ $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} \quad s.t. \quad \sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$ * Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$ $$s.t. k_1 + \dots + k_n \le k,$$ $$k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$ * A re-formulation: $$\min \operatorname{tr} \left[\sum_{i=1}^n 4^{k_i+1} x_i x_i^\top \right]^{-1} \qquad s.t. \quad \sum_{i=1}^n k_i \le k$$ ex objective $$s.t. \sum_{i=1}^{n} k_i \le k$$ Convex objective min $$\operatorname{tr}\left[\sum_{i=1}^n w_i x_i x_i^{\top}\right]^{-1}$$ $s.t.$ $\sum_{i=1}^n \log_4(w_i) - 1 \le k$ $$s.t. \sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$ * Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{R}^+$$ $$s.t. k_1 + \dots + k_n \le k,$$ $$k_i \in \mathbb{N}$$ $k_i \in \mathbb{R}^+$ * A re-formulation: $$\min \operatorname{tr} \left[\sum_{i=1}^{n} 4^{k_i + 1} x_i x_i^\top \right]^{-1} \quad s.t. \quad \sum_{i=1}^{n} k_i \leq k$$ ex objective $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^\top \right]^{-1} \quad s.t. \quad \sum_{i=1}^{n} \log_4(w_i) - 1 \leq k$$ $$s.t. \sum_{i=1}^{n} k_i \le k$$ Convex objective $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1}$$ s.t. $$\sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$ * Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$ * A re-formulation: $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} \quad s.t. \quad \sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$ $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} + \lambda \left[\sum_{i=1}^{n} \log_4(w_i) - (n-k) \right]$$ * Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \qquad s.t.$$ $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top}WX]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$ * A re-formulation: $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]$$ $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} \qquad s.t. \quad \sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$ convex objective $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} + \lambda \left[\sum_{i=1}^{n} \log_4(w_i) - (n-k) \right]$$ * Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1}$$ $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$ $$k_i \in \mathbb{R}^+$$ * A re-formulation: $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]$$ $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} \qquad s.t. \quad \sum_{i=1}^{n} \log_4(w_i) - 1 \le k$$ convex objective concave objective $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} + \lambda \left[\sum_{i=1}^{n} \log_4(w_i) - (n-k) \right]$$ * Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$ - * A re-formulation: - * DC (Difference of Convex functions) programming: $$\min \operatorname{tr} \left[\sum_{i=1}^{n} w_i x_i x_i^{\top} \right]^{-1} - \lambda \left[-\sum_{i=1}^{n} \log_4(w_i) + (n-k) \right]$$ * Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{R}^+$$ - * How to obtain integral solutions? "Sparsify" k - * Idea 1: round to the nearest integer - * Problem: might cause objective to increase significantly * Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \leq k, \quad k_i \in \mathbb{R}^+$$ - * How to obtain integral solutions? "Sparsify" k - * Idea 2: **simple** sampling - * Sample i from the distribution normalized by **k** - * k(i) = k(i) + 1 - * Problem: slow convergence (require large budget *k*) Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{R}^+$$ - * How to obtain integral solutions? "Sparsify" k - * Idea 3: **effective resistance** sampling $$t \sim p_t \propto 4^{k_t + 1} \ell_t$$ * Advantage: fast convergence (*k* independent of condition numbers of *X* or *W*. * Continuously relaxed optimal quantization: $$\min_{\mathbf{k}} \operatorname{tr}[X^{\top} W X]^{-1} \quad s.t. \quad k_1 + \dots + k_n \le k, \quad k_i \in \mathbb{N} + k_i \in \mathbb{R}^+$$ - * How to obtain integral solutions? "Sparsify" k - * Idea 3: **effective resistance** sampling $$t \sim p_t \propto 4^{k_t+1} \ell_t \quad \begin{array}{l} \text{Effective resistance:} \\ \ell_t = x_t^\top [W^*]^{-1} x_t \end{array}$$ * Advantage: fast convergence (*k* independent of condition numbers of *X* or *W*. # OPEN QUESTIONS * Most important question: how to solve (continuous) $$\min \operatorname{tr} \left[\sum_{i=1}^{n} 4^{k_i + 1} x_i x_i^{\top} \right]^{-1} \qquad s.t. \quad \sum_{i=1}^{n} k_i \le k$$ - * Some ideas: - * Is the objective quasi-convex or directional convex? - * Are local minima also global, or approximately global? - Escaping saddle point methods? - * Are there adequate **convex** relaxations? Thank you! Questions